/usr/include/sofa/component/odesolver/NewmarkImplicitSolver.h is in libsofa1-dev 1.0~beta4-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | /******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#ifndef SOFA_COMPONENT_ODESOLVER_NEWMARKIMPLICITSOLVER_H
#define SOFA_COMPONENT_ODESOLVER_NEWMARKIMPLICITSOLVER_H
#include <sofa/core/componentmodel/behavior/OdeSolver.h>
#include <sofa/component/odesolver/OdeSolverImpl.h>
namespace sofa
{
namespace component
{
namespace odesolver
{
using namespace sofa::defaulttype;
/** Implicit time integrator using Newmark scheme.
*
* This integration scheme is based on the following equations:
*
* $x_{t+h} = x_t + h v_t + h^2/2 ( (1-2\beta) a_t + 2\beta a_{t+h} )$
* $v_{t+h} = v_t + h ( (1-\gamma) a_t + \gamma a_{t+h} )$
*
* Applied to a mechanical system where $ M a_t + (r_M M + r_K K) v_t + K x_t = f_ext$, we need to solve the following system:
*
* $ M a_{t+h} + (r_M M + r_K K) v_{t+h} + K x_{t+h} = f_ext $
* $ M a_{t+h} + (r_M M + r_K K) ( v_t + h ( (1-\gamma) a_t + \gamma a_{t+h} ) ) + K ( x_t + h v_t + h^2/2 ( (1-2\beta) a_t + 2\beta a_{t+h} ) ) = f_ext $
* $ ( M + h \gamma (r_M M + r_K K) + h^2 \beta K ) a_{t+h} = f_ext - (r_M M + r_K K) ( v_t + h (1-\gamma) a_t ) - K ( x_t + h v_t + h^2/2 (1-2\beta) a_t ) $
* $ ( (1 + h \gamma r_M) M + (h^2 \beta + h \gamma r_K) K ) a_{t+h} = f_ext - (r_M M + r_K K) v_t - K x_t - (r_M M + r_K K) ( h (1-\gamma) a_t ) - K ( h v_t + h^2/2 (1-2\beta) a_t ) $
* $ ( (1 + h \gamma r_M) M + (h^2 \beta + h \gamma r_K) K ) a_{t+h} = a_t - (r_M M + r_K K) ( h (1-\gamma) a_t ) - K ( h v_t + h^2/2 (1-2\beta) a_t ) $
*
* The current implementation first computes $a_t$ directly (as in the explicit solvers), then solves the previous system to compute $a_{t+dt}$, and finally computes the new position and velocity.
*
*/
class SOFA_COMPONENT_ODESOLVER_API NewmarkImplicitSolver : public sofa::component::odesolver::OdeSolverImpl
{
public:
Data<double> f_rayleighStiffness;
Data<double> f_rayleighMass;
Data<double> f_velocityDamping;
Data<bool> f_verbose;
Data<double> f_gamma;
Data<double> f_beta;
NewmarkImplicitSolver();
void solve (double dt, sofa::core::componentmodel::behavior::BaseMechanicalState::VecId xResult, sofa::core::componentmodel::behavior::BaseMechanicalState::VecId vResult);
/// Given a displacement as computed by the linear system inversion, how much will it affect the velocity
virtual double getVelocityIntegrationFactor() const
{
return 1.0; // getContext()->getDt();
}
/// Given a displacement as computed by the linear system inversion, how much will it affect the position
virtual double getPositionIntegrationFactor() const
{
return getContext()->getDt(); //*getContext()->getDt());
}
/// Given an input derivative order (0 for position, 1 for velocity, 2 for acceleration),
/// how much will it affect the output derivative of the given order.
///
/// This method is used to compute the compliance for contact corrections.
/// For example, a backward-Euler dynamic implicit integrator would use:
/// Input: x_t v_t a_{t+dt}
/// x_{t+dt} 1 dt dt^2
/// v_{t+dt} 0 1 dt
///
/// If the linear system is expressed on s = a_{t+dt} dt, then the final factors are:
/// Input: x_t v_t a_t s
/// x_{t+dt} 1 dt 0 dt
/// v_{t+dt} 0 1 0 1
/// a_{t+dt} 0 0 0 1/dt
/// The last column is returned by the getSolutionIntegrationFactor method.
double getIntegrationFactor(int inputDerivative, int outputDerivative) const
{
const double dt = getContext()->getDt();
double matrix[3][3] = {
{ 1, dt, 0},
{ 0, 1, 0},
{ 0, 0, 0}};
if (inputDerivative >= 3 || outputDerivative >= 3)
return 0;
else
return matrix[outputDerivative][inputDerivative];
}
/// Given a solution of the linear system,
/// how much will it affect the output derivative of the given order.
double getSolutionIntegrationFactor(int outputDerivative) const
{
const double dt = getContext()->getDt();
double vect[3] = { dt, 1, 1/dt};
if (outputDerivative >= 3)
return 0;
else
return vect[outputDerivative];
}
};
} // namespace odesolver
} // namespace component
} // namespace sofa
#endif
|