This file is indexed.

/usr/include/sofa/component/linearsolver/LULinearSolver.h is in libsofa1-dev 1.0~beta4-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                               SOFA :: Modules                               *
*                                                                             *
* Authors: The SOFA Team and external contributors (see Authors.txt)          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/
#ifndef SOFA_COMPONENT_LINEARSOLVER_LULINEARSOLVER_H
#define SOFA_COMPONENT_LINEARSOLVER_LULINEARSOLVER_H

#include <sofa/core/componentmodel/behavior/LinearSolver.h>
#include <sofa/component/linearsolver/MatrixLinearSolver.h>
#include <sofa/component/linearsolver/SparseMatrix.h>
#include <sofa/component/linearsolver/FullMatrix.h>
#include <math.h>

namespace sofa
{

namespace component
{

namespace linearsolver
{

/// Linear system solver using the default (LU factorization) algorithm
template<class Matrix, class Vector>
class LULinearSolver : public sofa::component::linearsolver::MatrixLinearSolver<Matrix,Vector>, public virtual sofa::core::objectmodel::BaseObject
{
public:
    Data<bool> f_verbose;
    typename Matrix::LUSolver* solver;
    typename Matrix::InvMatrixType Minv;
    bool computedMinv;

    LULinearSolver()
    : f_verbose( initData(&f_verbose,false,"verbose","Dump system state at each iteration") )
    , solver(NULL), computedMinv(false)
    {
    }

    ~LULinearSolver()
    {
        if (solver != NULL)
            delete solver;
    }

    /// Invert M
    void invert (Matrix& M)
    {
        if (solver != NULL)
            delete solver;
        solver = M.makeLUSolver();
        computedMinv = false;
    }

    /// Solve Mx=b
    void solve (Matrix& M, Vector& x, Vector& b)
    {
        
        

        const bool verbose  = f_verbose.getValue();

        if( verbose )
        {
            serr<<"LULinearSolver, b = "<< b <<sendl;
            serr<<"LULinearSolver, M = "<< M <<sendl;
        }
        if (solver)
            M.solve(&x,&b, solver);
        else
            M.solve(&x,&b);

        // x is the solution of the system
        if( verbose )
        {
            serr<<"LULinearSolver::solve, solution = "<<x<<sendl;
        }
    }

    void computeMinv()
    {
        if (!computedMinv)
        {
            if (solver)
                Minv = solver->i();
            else
                Minv = this->systemMatrix->i();
            computedMinv = true;
        }
        /*typename Matrix::InvMatrixType I;
        I = ((*this->systemMatrix)*Minv);
        for (int i=0;i<I.rowSize();++i)
            for (int j=0;j<I.rowSize();++j)
            {
                double err = I.element(i,j)-((i==j)?1.0:0.0);
                if (fabs(err) > 1.0e-6)
                    serr << "ERROR: I("<<i<<","<<j<<") error "<<err<<sendl;
            }*/
    }

    double getMinvElement(int i, int j)
    {
        return Minv.element(i,j);
    }

    template<class RMatrix, class JMatrix>
    bool addJMInvJt(RMatrix& result, JMatrix& J, double fact)
    {
        const unsigned int Jrows = J.rowSize();
        const unsigned int Jcols = J.colSize();
        if (Jcols != this->systemMatrix->rowSize())
        {
            serr << "LULinearSolver::addJMInvJt ERROR: incompatible J matrix size." << sendl;
            return false;
        }

        if (!Jrows) return false;
        computeMinv();

        const typename JMatrix::LineConstIterator jitend = J.end();
        for (typename JMatrix::LineConstIterator jit1 = J.begin(); jit1 != jitend; ++jit1)
        {
            int row1 = jit1->first;
            for (typename JMatrix::LineConstIterator jit2 = jit1; jit2 != jitend; ++jit2)
            {
                int row2 = jit2->first;
                double acc = 0.0;
                for (typename JMatrix::LElementConstIterator i1 = jit1->second.begin(), i1end = jit1->second.end(); i1 != i1end; ++i1)
                {
                    int col1 = i1->first;
                    double val1 = i1->second;
                    for (typename JMatrix::LElementConstIterator i2 = jit2->second.begin(), i2end = jit2->second.end(); i2 != i2end; ++i2)
                    {
                        int col2 = i2->first;
                        double val2 = i2->second;
                        acc += val1 * getMinvElement(col1,col2) * val2;
                    }
                }
                acc *= fact;
                //sout << "W("<<row1<<","<<row2<<") += "<<acc<<" * "<<fact<<sendl;
                result.add(row1,row2,acc);
                if (row1!=row2)
                    result.add(row2,row1,acc);
            }
        }
        return true;
    }

    /// Multiply the inverse of the system matrix by the transpose of the given matrix, and multiply the result with the given matrix J
    ///
    /// @param result the variable where the result will be added
    /// @param J the matrix J to use
    /// @return false if the solver does not support this operation, of it the system matrix is not invertible
    bool addJMInvJt(defaulttype::BaseMatrix* result, defaulttype::BaseMatrix* J, double fact)
    {
        if (FullMatrix<double>* r = dynamic_cast<FullMatrix<double>*>(result))
        {
            if (SparseMatrix<double>* j = dynamic_cast<SparseMatrix<double>*>(J))
            {
                return addJMInvJt(*r,*j,fact);
            }
            else if (SparseMatrix<float>* j = dynamic_cast<SparseMatrix<float>*>(J))
            {
                return addJMInvJt(*r,*j,fact);
            }
        }
        else if (FullMatrix<double>* r = dynamic_cast<FullMatrix<double>*>(result))
        {
            if (SparseMatrix<double>* j = dynamic_cast<SparseMatrix<double>*>(J))
            {
                return addJMInvJt(*r,*j,fact);
            }
            else if (SparseMatrix<float>* j = dynamic_cast<SparseMatrix<float>*>(J))
            {
                return addJMInvJt(*r,*j,fact);
            }
        }
        else if (defaulttype::BaseMatrix* r = result)
        {
            if (SparseMatrix<double>* j = dynamic_cast<SparseMatrix<double>*>(J))
            {
                return addJMInvJt(*r,*j,fact);
            }
            else if (SparseMatrix<float>* j = dynamic_cast<SparseMatrix<float>*>(J))
            {
                return addJMInvJt(*r,*j,fact);
            }
        }
        return false;
    }

};

} // namespace linearsolver

} // namespace component

} // namespace sofa

#endif