/usr/include/sofa/component/collision/NewProximityIntersection.inl is in libsofa1-dev 1.0~beta4-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | /******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#ifndef SOFA_COMPONENT_COLLISION_NEWPROXIMITYINTERSECTION_INL
#define SOFA_COMPONENT_COLLISION_NEWPROXIMITYINTERSECTION_INL
#include <sofa/helper/system/config.h>
#include <sofa/component/collision/NewProximityIntersection.h>
#include <sofa/helper/proximity.h>
#include <sofa/defaulttype/Mat.h>
#include <sofa/defaulttype/Vec.h>
#include <sofa/core/componentmodel/collision/Intersection.inl>
#include <iostream>
#include <algorithm>
namespace sofa
{
namespace component
{
namespace collision
{
using namespace sofa::defaulttype;
using namespace sofa::core::componentmodel::collision;
using namespace helper;
inline int NewProximityIntersection::doIntersectionLineLine(double dist2, const Vector3& p1, const Vector3& p2, const Vector3& q1, const Vector3& q2, OutputVector* contacts, int id)
{
const Vector3 AB = p2-p1;
const Vector3 CD = q2-q1;
const Vector3 AC = q1-p1;
Matrix2 A;
Vector2 b;
A[0][0] = AB*AB;
A[1][1] = CD*CD;
A[0][1] = A[1][0] = -CD*AB;
b[0] = AB*AC;
b[1] = -CD*AC;
const double det = determinant(A);
double alpha = 0.5;
double beta = 0.5;
if (det < -0.000000000001 || det > 0.000000000001)
{
alpha = (b[0]*A[1][1] - b[1]*A[0][1])/det;
beta = (b[1]*A[0][0] - b[0]*A[1][0])/det;
//if (alpha < 0.000001 || alpha > 0.999999 ||
// beta < 0.000001 || beta > 0.999999 )
// return 0;
if (alpha < 0.0) alpha = 0.0;
else if (alpha > 1.0) alpha = 1.0;
if (beta < 0.0) beta = 0.0;
else if (beta > 1.0) beta = 1.0;
}
Vector3 p,q,pq;
p = p1 + AB * alpha;
q = q1 + CD * beta;
pq = q-p;
if (pq.norm2() >= dist2)
return 0;
//const double contactDist = getContactDistance() + e1.getProximity() + e2.getProximity();
contacts->resize(contacts->size()+1);
DetectionOutput *detection = &*(contacts->end()-1);
//detection->elem = std::pair<core::CollisionElementIterator, core::CollisionElementIterator>(e1, e2);
detection->id = id;
detection->point[0]=p;
detection->point[1]=q;
detection->normal=pq;
detection->value = detection->normal.norm();
detection->normal /= detection->value;
//detection->value -= contactDist;
return 1;
}
inline int NewProximityIntersection::doIntersectionLinePoint(double dist2, const Vector3& p1, const Vector3& p2, const Vector3& q, OutputVector* contacts, int id, bool swapElems)
{
const Vector3 AB = p2-p1;
const Vector3 AQ = q -p1;
double A;
double b;
A = AB*AB;
b = AQ*AB;
double alpha = 0.5;
//if (A < -0.000001 || A > 0.000001)
{
alpha = b/A;
//if (alpha < 0.000001 || alpha > 0.999999)
// return 0;
if (alpha < 0.0) alpha = 0.0;
else if (alpha > 1.0) alpha = 1.0;
}
Vector3 p,pq;
p = p1 + AB * alpha;
pq = q-p;
if (pq.norm2() >= dist2)
return 0;
//const double contactDist = getContactDistance() + e1.getProximity() + e2.getProximity();
contacts->resize(contacts->size()+1);
DetectionOutput *detection = &*(contacts->end()-1);
//detection->elem = std::pair<core::CollisionElementIterator, core::CollisionElementIterator>(e2, e1);
detection->id = id;
if (swapElems)
{
detection->point[0]=q;
detection->point[1]=p;
detection->normal = -pq;
}
else
{
detection->point[0]=p;
detection->point[1]=q;
detection->normal = pq;
}
detection->value = detection->normal.norm();
detection->normal /= detection->value;
//detection->value -= contactDist;
return 1;
}
inline int NewProximityIntersection::doIntersectionPointPoint(double dist2, const Vector3& p, const Vector3& q, OutputVector* contacts, int id)
{
Vector3 pq;
pq = q-p;
if (pq.norm2() >= dist2)
return 0;
//const double contactDist = getContactDistance() + e1.getProximity() + e2.getProximity();
contacts->resize(contacts->size()+1);
DetectionOutput *detection = &*(contacts->end()-1);
//detection->elem = std::pair<core::CollisionElementIterator, core::CollisionElementIterator>(e1, e2);
detection->id = id;
detection->point[0]=p;
detection->point[1]=q;
detection->normal=pq;
detection->value = detection->normal.norm();
detection->normal /= detection->value;
//detection->value -= contactDist;
return 1;
}
inline int NewProximityIntersection::doIntersectionTrianglePoint(double dist2, int flags, const Vector3& p1, const Vector3& p2, const Vector3& p3, const Vector3& /*n*/, const Vector3& q, OutputVector* contacts, int id, bool swapElems)
{
const Vector3 AB = p2-p1;
const Vector3 AC = p3-p1;
const Vector3 AQ = q -p1;
Matrix2 A;
Vector2 b;
A[0][0] = AB*AB;
A[1][1] = AC*AC;
A[0][1] = A[1][0] = AB*AC;
b[0] = AQ*AB;
b[1] = AQ*AC;
const double det = determinant(A);
double alpha = 0.5;
double beta = 0.5;
//if (det < -0.000000000001 || det > 0.000000000001)
{
alpha = (b[0]*A[1][1] - b[1]*A[0][1])/det;
beta = (b[1]*A[0][0] - b[0]*A[1][0])/det;
//if (alpha < 0.000001 ||
// beta < 0.000001 ||
// alpha + beta > 0.999999)
// return 0;
if (alpha < 0.000001 || beta < 0.000001 || alpha + beta > 0.999999)
{ // nearest point is on an edge or corner
// barycentric coordinate on AB
double pAB = b[0] / A[0][0]; // AQ*AB / AB*AB
// barycentric coordinate on AC
double pAC = b[1] / A[1][1]; // AQ*AB / AB*AB
if (pAB < 0.000001 && pAC < 0.0000001)
{ // closest point is A
if (!(flags&TriangleModel::FLAG_P1)) return 0; // this corner is not considered
alpha = 0.0;
beta = 0.0;
}
else if (pAB < 0.999999 && beta < 0.000001)
{ // closest point is on AB
if (!(flags&TriangleModel::FLAG_E12)) return 0; // this edge is not considered
alpha = pAB;
beta = 0.0;
}
else if (pAC < 0.999999 && alpha < 0.000001)
{ // closest point is on AC
if (!(flags&TriangleModel::FLAG_E12)) return 0; // this edge is not considered
alpha = 0.0;
beta = pAC;
}
else
{
// barycentric coordinate on BC
// BQ*BC / BC*BC = (AQ-AB)*(AC-AB) / (AC-AB)*(AC-AB) = (AQ*AC-AQ*AB + AB*AB-AB*AC) / (AB*AB+AC*AC-2AB*AC)
double pBC = (b[1] - b[0] + A[0][0] - A[1][1]) / (A[0][0] + A[1][1] - 2*A[0][1]); // BQ*BC / BC*BC
if (pBC < 0.000001)
{ // closest point is B
if (!(flags&TriangleModel::FLAG_P2)) return 0; // this edge is not considered
alpha = 1.0;
beta = 0.0;
}
else if (pBC > 0.999999)
{ // closest point is C
if (!(flags&TriangleModel::FLAG_P3)) return 0; // this edge is not considered
alpha = 0.0;
beta = 1.0;
}
else
{ // closest point is on BC
if (!(flags&TriangleModel::FLAG_E31)) return 0; // this edge is not considered
alpha = 1.0-pBC;
beta = pBC;
}
}
}
}
Vector3 p, pq;
p = p1 + AB * alpha + AC * beta;
pq = q-p;
if (pq.norm2() >= dist2)
return 0;
//const double contactDist = getContactDistance() + e1.getProximity() + e2.getProximity();
contacts->resize(contacts->size()+1);
DetectionOutput *detection = &*(contacts->end()-1);
//detection->elem = std::pair<core::CollisionElementIterator, core::CollisionElementIterator>(e1, e2);
detection->id = id;
if (swapElems)
{
detection->point[0]=q;
detection->point[1]=p;
detection->normal = -pq;
}
else
{
detection->point[0]=p;
detection->point[1]=q;
detection->normal = pq;
}
detection->value = detection->normal.norm();
detection->normal /= detection->value;
//printf("\n normale : x = %f , y = %f, z = %f",detection->normal.x(),detection->normal.y(),detection->normal.z());
//if (e2.getCollisionModel()->isStatic() && detection->normal * e2.n() < -0.95)
//{ // The elements are interpenetrating
// detection->normal = -detection->normal;
// detection->value = -detection->value;
//}
//detection->value -= contactDist;
return 1;
}
template<class Sphere>
bool NewProximityIntersection::testIntersection(Sphere& e1, Point& e2)
{
OutputVector contacts;
const double alarmDist = getAlarmDistance() + e1.getProximity() + e2.getProximity() + e1.r();
int n = doIntersectionPointPoint(alarmDist*alarmDist, e1.center(), e2.p(), &contacts, -1);
return n>0;
}
template<class Sphere>
int NewProximityIntersection::computeIntersection(Sphere& e1, Point& e2, OutputVector* contacts)
{
const double alarmDist = getAlarmDistance() + e1.getProximity() + e2.getProximity() + e1.r();
int n = doIntersectionPointPoint(alarmDist*alarmDist, e1.center(), e2.p(), contacts, (e1.getCollisionModel()->getSize() > e2.getCollisionModel()->getSize()) ? e1.getIndex() : e2.getIndex());
if (n>0)
{
const double contactDist = getContactDistance() + e1.getProximity() + e2.getProximity() + e1.r();
for (OutputVector::iterator detection = contacts->end()-n; detection != contacts->end(); ++detection)
{
detection->elem = std::pair<core::CollisionElementIterator, core::CollisionElementIterator>(e1, e2);
detection->value -= contactDist;
}
}
return n;
}
template<class Sphere>
bool NewProximityIntersection::testIntersection(Sphere& e1, Sphere& e2)
{
OutputVector contacts;
const double alarmDist = getAlarmDistance() + e1.getProximity() + e2.getProximity() + e1.r() + e2.r();
int n = doIntersectionPointPoint(alarmDist*alarmDist, e1.center(), e2.center(), &contacts, -1);
return n>0;
}
template<class Sphere>
int NewProximityIntersection::computeIntersection(Sphere& e1, Sphere& e2, OutputVector* contacts)
{
const double alarmDist = getAlarmDistance() + e1.getProximity() + e2.getProximity() + e1.r() + e2.r();
int n = doIntersectionPointPoint(alarmDist*alarmDist, e1.center(), e2.center(), contacts, (e1.getCollisionModel()->getSize() > e2.getCollisionModel()->getSize()) ? e1.getIndex() : e2.getIndex());
if (n>0)
{
const double contactDist = getContactDistance() + e1.getProximity() + e2.getProximity() + e1.r() + e2.r();
for (OutputVector::iterator detection = contacts->end()-n; detection != contacts->end(); ++detection)
{
detection->elem = std::pair<core::CollisionElementIterator, core::CollisionElementIterator>(e1, e2);
detection->value -= contactDist;
}
}
return n;
}
template<class Sphere>
bool NewProximityIntersection::testIntersection(Line&, Sphere&)
{
serr << "Unnecessary call to NewProximityIntersection::testIntersection(Line,Sphere)."<<sendl;
return true;
}
template<class Sphere>
int NewProximityIntersection::computeIntersection(Line& e1, Sphere& e2, OutputVector* contacts)
{
const double alarmDist = getAlarmDistance() + e1.getProximity() + e2.getProximity() + e2.r();
int n = doIntersectionLinePoint(alarmDist*alarmDist, e1.p1(),e1.p2(), e2.center(), contacts, e2.getIndex());
if (n>0)
{
const double contactDist = getContactDistance() + e1.getProximity() + e2.getProximity() + e2.r();
for (OutputVector::iterator detection = contacts->end()-n; detection != contacts->end(); ++detection)
{
detection->elem = std::pair<core::CollisionElementIterator, core::CollisionElementIterator>(e1, e2);
detection->value -= contactDist;
}
}
return n;
}
template<class Sphere>
bool NewProximityIntersection::testIntersection(Triangle&, Sphere&)
{
serr << "Unnecessary call to NewProximityIntersection::testIntersection(Triangle,Sphere)."<<sendl;
return true;
}
template<class Sphere>
int NewProximityIntersection::computeIntersection(Triangle& e1, Sphere& e2, OutputVector* contacts)
{
const double alarmDist = getAlarmDistance() + e1.getProximity() + e2.getProximity() + e2.r();
const double dist2 = alarmDist*alarmDist;
int n = doIntersectionTrianglePoint(dist2, e1.flags(),e1.p1(),e1.p2(),e1.p3(),e1.n(), e2.center(), contacts, e2.getIndex());
if (n>0)
{
const double contactDist = getContactDistance() + e1.getProximity() + e2.getProximity() + e2.r();
for (OutputVector::iterator detection = contacts->end()-n; detection != contacts->end(); ++detection)
{
detection->elem = std::pair<core::CollisionElementIterator, core::CollisionElementIterator>(e1, e2);
detection->value -= contactDist;
}
}
return n;
}
} // namespace collision
} // namespace component
} // namespace sofa
#endif
|