/usr/include/sofa/component/collision/DistanceGridCollisionModel.h is in libsofa1-dev 1.0~beta4-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 | /******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#ifndef SOFA_COMPONENT_COLLISION_DISTANCEGRIDCOLLISIONMODEL_H
#define SOFA_COMPONENT_COLLISION_DISTANCEGRIDCOLLISIONMODEL_H
#include <sofa/core/CollisionModel.h>
#include <sofa/component/container/MechanicalObject.h>
#include <sofa/defaulttype/Vec3Types.h>
#include <sofa/defaulttype/RigidTypes.h>
#include <sofa/helper/io/Mesh.h>
#include <sofa/component/topology/RegularGridTopology.h>
#include <sofa/core/objectmodel/DataFileName.h>
namespace sofa
{
namespace component
{
namespace collision
{
using namespace sofa::defaulttype;
using namespace sofa::helper;
class SOFA_COMPONENT_COLLISION_API DistanceGrid
{
public:
static SReal maxDist() { return (SReal)1e10; }
typedef Vector3 Coord;
typedef defaulttype::ExtVector<SReal> VecSReal;
typedef defaulttype::ExtVector<Coord> VecCoord;
DistanceGrid(int nx, int ny, int nz, Coord pmin, Coord pmax);
DistanceGrid(int nx, int ny, int nz, Coord pmin, Coord pmax, defaulttype::ExtVectorAllocator<SReal>* alloc);
protected:
~DistanceGrid();
public:
/// Load a distance grid
static DistanceGrid* load(const std::string& filename, double scale=1.0, int nx=64, int ny=64, int nz=64, Coord pmin = Coord(), Coord pmax = Coord());
static DistanceGrid* loadVTKFile(const std::string& filename, double scale=1.0);
/// Load or reuse a distance grid
static DistanceGrid* loadShared(const std::string& filename, double scale=1.0, int nx=64, int ny=64, int nz=64, Coord pmin = Coord(), Coord pmax = Coord());
/// Add one reference to this grid. Note that loadShared already does this.
DistanceGrid* addRef();
/// Release one reference, deleting this grid if this is the last
bool release();
/// Save current grid
bool save(const std::string& filename);
/// Compute distance field from given mesh
void calcDistance(sofa::helper::io::Mesh* mesh, double scale=1.0);
/// Compute distance field for a cube of the given half-size.
/// Also create a mesh of points using np points per axis
void calcCubeDistance(SReal dim=1, int np=5);
/// Update bbox
void computeBBox();
int getNx() const { return nx; }
int getNy() const { return ny; }
int getNz() const { return nz; }
const Coord& getCellWidth() const { return cellWidth; }
int size() const { return nxnynz; }
const Coord& getBBMin() const { return bbmin; }
const Coord& getBBMax() const { return bbmax; }
void setBBMin(const Coord& val) { bbmin = val; }
void setBBMax(const Coord& val) { bbmax = val; }
Coord getBBCorner(int i) const { return Coord((i&1)?bbmax[0]:bbmin[0],(i&2)?bbmax[1]:bbmin[1],(i&4)?bbmax[2]:bbmin[2]); }
bool inBBox(const Coord& p, SReal margin=0.0f) const
{
for (int c=0;c<3;++c)
if (p[c] < bbmin[c]-margin || p[c] > bbmax[c]+margin) return false;
return true;
}
const Coord& getPMin() const { return pmin; }
const Coord& getPMax() const { return pmax; }
Coord getCorner(int i) const { return Coord((i&1)?pmax[0]:pmin[0],(i&2)?pmax[1]:pmin[1],(i&4)?pmax[2]:pmin[2]); }
bool isCube() const { return cubeDim != 0; }
SReal getCubeDim() const { return cubeDim; }
bool inGrid(const Coord& p) const
{
Coord epsilon = cellWidth*0.1;
for (int c=0;c<3;++c)
if (p[c] < pmin[c]+epsilon[c] || p[c] > pmax[c]-epsilon[c]) return false;
return true;
}
Coord clamp(Coord p) const
{
for (int c=0;c<3;++c)
if (p[c] < pmin[c]) p[c] = pmin[c];
else if (p[c] > pmax[c]) p[c] = pmax[c];
return p;
}
int ix(const Coord& p) const
{
return rfloor((p[0]-pmin[0])*invCellWidth[0]);
}
int iy(const Coord& p) const
{
return rfloor((p[1]-pmin[1])*invCellWidth[1]);
}
int iz(const Coord& p) const
{
return rfloor((p[2]-pmin[2])*invCellWidth[2]);
}
int index(const Coord& p, Coord& coefs) const
{
coefs[0] = (p[0]-pmin[0])*invCellWidth[0];
coefs[1] = (p[1]-pmin[1])*invCellWidth[1];
coefs[2] = (p[2]-pmin[2])*invCellWidth[2];
int x = rfloor(coefs[0]);
if (x<0) x=0; else if (x>=nx-1) x=nx-2;
coefs[0] -= x;
int y = rfloor(coefs[1]);
if (y<0) y=0; else if (y>=ny-1) y=ny-2;
coefs[1] -= y;
int z = rfloor(coefs[2]);
if (z<0) z=0; else if (z>=nz-1) z=nz-2;
coefs[2] -= z;
return x+nx*(y+ny*(z));
}
int index(const Coord& p) const
{
Coord coefs;
return index(p, coefs);
}
int index(int x, int y, int z)
{
return x+nx*(y+ny*(z));
}
Coord coord(int x, int y, int z)
{
return pmin+Coord(x*cellWidth[0], y*cellWidth[1], z*cellWidth[2]);
}
SReal operator[](int index) const { return dists[index]; }
SReal& operator[](int index) { return dists[index]; }
static SReal interp(SReal coef, SReal a, SReal b)
{
return a+coef*(b-a);
}
SReal interp(int index, const Coord& coefs) const
{
return interp(coefs[2],interp(coefs[1],interp(coefs[0],dists[index ],dists[index+1 ]),
interp(coefs[0],dists[index +nx ],dists[index+1+nx ])),
interp(coefs[1],interp(coefs[0],dists[index +nxny],dists[index+1 +nxny]),
interp(coefs[0],dists[index +nx+nxny],dists[index+1+nx+nxny])));
}
SReal interp(const Coord& p) const
{
Coord coefs;
int i = index(p, coefs);
return interp(i, coefs);
}
Coord grad(int index, const Coord& coefs) const
{
// val = dist[0][0][0] * (1-x) * (1-y) * (1-z)
// + dist[1][0][0] * ( x) * (1-y) * (1-z)
// + dist[0][1][0] * (1-x) * ( y) * (1-z)
// + dist[1][1][0] * ( x) * ( y) * (1-z)
// + dist[0][0][1] * (1-x) * (1-y) * ( z)
// + dist[1][0][1] * ( x) * (1-y) * ( z)
// + dist[0][1][1] * (1-x) * ( y) * ( z)
// + dist[1][1][1] * ( x) * ( y) * ( z)
// dval / dx = (dist[1][0][0]-dist[0][0][0]) * (1-y) * (1-z)
// + (dist[1][1][0]-dist[0][1][0]) * ( y) * (1-z)
// + (dist[1][0][1]-dist[0][0][1]) * (1-y) * ( z)
// + (dist[1][1][1]-dist[0][1][1]) * ( y) * ( z)
const SReal dist000 = dists[index ];
const SReal dist100 = dists[index+1 ];
const SReal dist010 = dists[index +nx ];
const SReal dist110 = dists[index+1+nx ];
const SReal dist001 = dists[index +nxny];
const SReal dist101 = dists[index+1 +nxny];
const SReal dist011 = dists[index +nx+nxny];
const SReal dist111 = dists[index+1+nx+nxny];
return Coord(
interp(coefs[2],interp(coefs[1],dist100-dist000,dist110-dist010),interp(coefs[1],dist101-dist001,dist111-dist011)), //*invCellWidth[0],
interp(coefs[2],interp(coefs[0],dist010-dist000,dist110-dist100),interp(coefs[0],dist011-dist001,dist111-dist101)), //*invCellWidth[1],
interp(coefs[1],interp(coefs[0],dist001-dist000,dist101-dist100),interp(coefs[0],dist011-dist010,dist111-dist110))); //*invCellWidth[2]);
}
Coord grad(const Coord& p) const
{
Coord coefs;
int i = index(p, coefs);
return grad(i, coefs);
}
SReal eval(const Coord& x) const
{
SReal d;
if (inGrid(x))
{
d = interp(x);
}
else
{
Coord xclamp = clamp(x);
d = interp(xclamp);
d = rsqrt((x-xclamp).norm2() + d*d); // we underestimate the distance
}
return d;
}
SReal quickeval(const Coord& x) const
{
SReal d;
if (inGrid(x))
{
d = dists[index(x)] - cellWidth[0]; // we underestimate the distance
}
else
{
Coord xclamp = clamp(x);
d = dists[index(xclamp)] - cellWidth[0]; // we underestimate the distance
d = rsqrt((x-xclamp).norm2() + d*d);
}
return d;
}
SReal eval2(const Coord& x) const
{
SReal d2;
if (inGrid(x))
{
SReal d = interp(x);
d2 = d*d;
}
else
{
Coord xclamp = clamp(x);
SReal d = interp(xclamp);
d2 = ((x-xclamp).norm2() + d*d); // we underestimate the distance
}
return d2;
}
SReal quickeval2(const Coord& x) const
{
SReal d2;
if (inGrid(x))
{
SReal d = dists[index(x)] - cellWidth[0]; // we underestimate the distance
d2 = d*d;
}
else
{
Coord xclamp = clamp(x);
SReal d = dists[index(xclamp)] - cellWidth[0]; // we underestimate the distance
d2 = ((x-xclamp).norm2() + d*d);
}
return d2;
}
VecCoord meshPts;
protected:
int nbRef;
VecSReal dists;
const int nx,ny,nz, nxny, nxnynz;
const Coord pmin, pmax;
const Coord cellWidth, invCellWidth;
Coord bbmin, bbmax; ///< bounding box of the object, smaller than the grid
SReal cubeDim; ///< Cube dimension (!=0 if this is actually a cube
// Fast Marching Method Update
enum Status { FMM_FRONT0 = 0, FMM_FAR = -1, FMM_KNOWN_OUT = -2, FMM_KNOWN_IN = -3 };
helper::vector<int> fmm_status;
helper::vector<int> fmm_heap;
int fmm_heap_size;
int fmm_pop();
void fmm_push(int index);
void fmm_swap(int entry1, int entry2);
// Grid shared resources
struct DistanceGridParams
{
std::string filename;
double scale;
int nx,ny,nz;
Coord pmin,pmax;
bool operator==(const DistanceGridParams& v) const
{
if (!(filename == v.filename)) return false;
if (!(scale == v.scale )) return false;
if (!(nx == v.nx )) return false;
if (!(ny == v.ny )) return false;
if (!(nz == v.nz )) return false;
if (!(pmin[0] == v.pmin[0] )) return false;
if (!(pmin[1] == v.pmin[1] )) return false;
if (!(pmin[2] == v.pmin[2] )) return false;
if (!(pmax[0] == v.pmax[0] )) return false;
if (!(pmax[1] == v.pmax[1] )) return false;
if (!(pmax[2] == v.pmax[2] )) return false;
return true;
}
bool operator<(const DistanceGridParams& v) const
{
if (filename < v.filename) return true;
if (filename > v.filename) return false;
if (scale < v.scale ) return true;
if (scale > v.scale ) return false;
if (nx < v.nx ) return false;
if (nx > v.nx ) return true;
if (ny < v.ny ) return false;
if (ny > v.ny ) return true;
if (nz < v.nz ) return false;
if (nz > v.nz ) return true;
if (pmin[0] < v.pmin[0] ) return false;
if (pmin[0] > v.pmin[0] ) return true;
if (pmin[1] < v.pmin[1] ) return false;
if (pmin[1] > v.pmin[1] ) return true;
if (pmin[2] < v.pmin[2] ) return false;
if (pmin[2] > v.pmin[2] ) return true;
if (pmax[0] < v.pmax[0] ) return false;
if (pmax[0] > v.pmax[0] ) return true;
if (pmax[1] < v.pmax[1] ) return false;
if (pmax[1] > v.pmax[1] ) return true;
if (pmax[2] < v.pmax[2] ) return false;
if (pmax[2] > v.pmax[2] ) return true;
return false;
}
bool operator>(const DistanceGridParams& v) const
{
if (filename > v.filename) return true;
if (filename < v.filename) return false;
if (scale > v.scale ) return true;
if (scale < v.scale ) return false;
if (nx > v.nx ) return false;
if (nx < v.nx ) return true;
if (ny > v.ny ) return false;
if (ny < v.ny ) return true;
if (nz > v.nz ) return false;
if (nz < v.nz ) return true;
if (pmin[0] > v.pmin[0] ) return false;
if (pmin[0] < v.pmin[0] ) return true;
if (pmin[1] > v.pmin[1] ) return false;
if (pmin[1] < v.pmin[1] ) return true;
if (pmin[2] > v.pmin[2] ) return false;
if (pmin[2] < v.pmin[2] ) return true;
if (pmax[0] > v.pmax[0] ) return false;
if (pmax[0] < v.pmax[0] ) return true;
if (pmax[1] > v.pmax[1] ) return false;
if (pmax[1] < v.pmax[1] ) return true;
if (pmax[2] > v.pmax[2] ) return false;
if (pmax[2] < v.pmax[2] ) return true;
return false;
}
};
static std::map<DistanceGridParams, DistanceGrid*>& getShared();
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
class SOFA_COMPONENT_COLLISION_API RigidDistanceGridCollisionModel;
class RigidDistanceGridCollisionElement : public core::TCollisionElementIterator<RigidDistanceGridCollisionModel>
{
public:
RigidDistanceGridCollisionElement(RigidDistanceGridCollisionModel* model, int index);
explicit RigidDistanceGridCollisionElement(core::CollisionElementIterator& i);
DistanceGrid* getGrid();
bool isTransformed();
const Matrix3& getRotation();
const Vector3& getTranslation();
void setGrid(DistanceGrid* surf);
/// @name Previous state data
/// Used to estimate velocity in case the distance grid itself is dynamic
/// @{
DistanceGrid* getPrevGrid();
const Matrix3& getPrevRotation();
const Vector3& getPrevTranslation();
double getPrevDt();
/// @}
/// Set new grid and transform, keeping the old state to estimate velocity
void setNewState(double dt, DistanceGrid* grid, const Matrix3& rotation, const Vector3& translation);
};
class SOFA_COMPONENT_COLLISION_API RigidDistanceGridCollisionModel : public core::CollisionModel
{
protected:
class ElementData
{
public:
Matrix3 rotation;
Vector3 translation;
DistanceGrid* grid;
/// @name Previous state data
/// Used to estimate velocity in case the distance grid itself is dynamic
/// @{
DistanceGrid* prevGrid; ///< Previous grid
Matrix3 prevRotation; ///< Previous rotation
Vector3 prevTranslation; ///< Previous translation
double prevDt; ///< Time difference between previous and current state
/// @}
bool isTransformed; ///< True if translation/rotation was set
ElementData() : grid(NULL), prevGrid(NULL), prevDt(0.0), isTransformed(false) { rotation.identity(); prevRotation.identity(); }
};
sofa::helper::vector<ElementData> elems;
bool modified;
// Input data parameters
sofa::core::objectmodel::DataFileName fileRigidDistanceGrid;
Data< double > scale;
Data< helper::fixed_array<DistanceGrid::Coord,2> > box;
Data< int > nx;
Data< int > ny;
Data< int > nz;
sofa::core::objectmodel::DataFileName dumpfilename;
core::componentmodel::behavior::MechanicalState<RigidTypes>* rigid;
void updateGrid();
public:
typedef Rigid3Types InDataTypes;
typedef Vec3Types DataTypes;
typedef RigidDistanceGridCollisionElement Element;
Data< bool > usePoints;
RigidDistanceGridCollisionModel();
~RigidDistanceGridCollisionModel();
core::componentmodel::behavior::MechanicalState<InDataTypes>* getRigidModel() { return rigid; }
core::componentmodel::behavior::MechanicalState<InDataTypes>* getMechanicalState() { return rigid; }
void init();
DistanceGrid* getGrid(int index=0)
{
return elems[index].grid;
}
bool isTransformed(int index=0)
{
return elems[index].isTransformed;
}
const Matrix3& getRotation(int index=0)
{
return elems[index].rotation;
}
const Vector3& getTranslation(int index=0)
{
return elems[index].translation;
}
void setGrid(DistanceGrid* surf, int index=0);
DistanceGrid* getPrevGrid(int index=0)
{
return elems[index].prevGrid;
}
const Matrix3& getPrevRotation(int index=0)
{
return elems[index].prevRotation;
}
const Vector3& getPrevTranslation(int index=0)
{
return elems[index].prevTranslation;
}
double getPrevDt(int index=0)
{
return elems[index].prevDt;
}
/// Set new grid and transform, keeping the old state to estimate velocity
void setNewState(int index, double dt, DistanceGrid* grid, const Matrix3& rotation, const Vector3& translation);
/// @}
/// Set new grid and transform, keeping the old state to estimate velocity
void setNewState(double dt, DistanceGrid* grid, const Matrix3& rotation, const Vector3& translation);
// -- CollisionModel interface
void resize(int size);
/// Create or update the bounding volume hierarchy.
void computeBoundingTree(int maxDepth=0);
void draw(int index);
void draw();
};
inline RigidDistanceGridCollisionElement::RigidDistanceGridCollisionElement(RigidDistanceGridCollisionModel* model, int index)
: core::TCollisionElementIterator<RigidDistanceGridCollisionModel>(model, index)
{}
inline RigidDistanceGridCollisionElement::RigidDistanceGridCollisionElement(core::CollisionElementIterator& i)
: core::TCollisionElementIterator<RigidDistanceGridCollisionModel>(static_cast<RigidDistanceGridCollisionModel*>(i.getCollisionModel()), i.getIndex())
{
}
inline DistanceGrid* RigidDistanceGridCollisionElement::getGrid() { return model->getGrid(index); }
inline void RigidDistanceGridCollisionElement::setGrid(DistanceGrid* surf) { return model->setGrid(surf, index); }
inline bool RigidDistanceGridCollisionElement::isTransformed() { return model->isTransformed(index); }
inline const Matrix3& RigidDistanceGridCollisionElement::getRotation() { return model->getRotation(index); }
inline const Vector3& RigidDistanceGridCollisionElement::getTranslation() { return model->getTranslation(index); }
inline DistanceGrid* RigidDistanceGridCollisionElement::getPrevGrid() { return model->getPrevGrid(index); }
inline const Matrix3& RigidDistanceGridCollisionElement::getPrevRotation() { return model->getPrevRotation(index); }
inline const Vector3& RigidDistanceGridCollisionElement::getPrevTranslation() { return model->getPrevTranslation(index); }
inline double RigidDistanceGridCollisionElement::getPrevDt() { return model->getPrevDt(index); }
inline void RigidDistanceGridCollisionElement::setNewState(double dt, DistanceGrid* grid, const Matrix3& rotation, const Vector3& translation)
{
return model->setNewState(dt, grid, rotation, translation);
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
class FFDDistanceGridCollisionModel;
class FFDDistanceGridCollisionElement : public core::TCollisionElementIterator<FFDDistanceGridCollisionModel>
{
public:
FFDDistanceGridCollisionElement(FFDDistanceGridCollisionModel* model, int index);
explicit FFDDistanceGridCollisionElement(core::CollisionElementIterator& i);
DistanceGrid* getGrid();
void setGrid(DistanceGrid* surf);
};
class SOFA_COMPONENT_COLLISION_API FFDDistanceGridCollisionModel : public core::CollisionModel
{
public:
typedef SReal GSReal;
typedef DistanceGrid::Coord GCoord;
class DeformedCube
{
public:
DistanceGrid* grid;
DeformedCube() : grid(NULL) {}
int elem; ///< Index of the corresponding element in the topology
struct Point
{
GCoord bary; ///< Barycentric coordinates
int index; ///< Index of corresponding point in in DistanceGrid
};
vector<Point> points; ///< barycentric coordinates of included points
GCoord initP0,initDP,invDP; ///< Initial corners position
GCoord corners[8]; ///< Current corners position
enum {C000 = 0+0+0,
C100 = 1+0+0,
C010 = 0+2+0,
C110 = 1+2+0,
C001 = 0+0+4,
C101 = 1+0+4,
C011 = 0+2+4,
C111 = 1+2+4};
typedef Vec<4,GSReal> Plane; ///< plane equation as defined by Plane.(x y z 1) = 0
Plane faces[6]; ///< planes corresponding to the six faces (FX0,FX1,FY0,FY1,FZ0,FZ1)
enum {FX0 = 0+0,
FX1 = 0+1,
FY0 = 2+0,
FY1 = 2+1,
FZ0 = 4+0,
FZ1 = 4+1};
/// @name Precomputed deformation factors
/// We have :
/// deform(b) = C000(1-b[0])(1-b[1])(1-b[2]) + C100(b[0])(1-b[1])(1-b[2]) + C010(1-b[0])(b[1])(1-b[2]) + C110(b[0])(b[1])(1-b[2])
/// + C001(1-b[0])(1-b[1])( b[2]) + C101(b[0])(1-b[1])( b[2]) + C011(1-b[0])(b[1])( b[2]) + C111(b[0])(b[1])( b[2])
/// = C000 + Dx b[0] + Dy b[1] + Dz b[2] + Dxy b[0]b[1] + Dxz b[0]b[2] + dyz b[1]b[2] + dxyz b[0]b[1]b[2]
/// @{
GCoord Dx; ///< Dx = -C000+C100
GCoord Dy; ///< Dy = -C000+C010
GCoord Dz; ///< Dx = -C000+C001
GCoord Dxy; ///< Dxy = C000-C100-C010+C110 = C110-C010-Dx
GCoord Dxz; ///< Dxz = C000-C100-C001+C101 = C101-C001-Dx
GCoord Dyz; ///< Dyz = C000-C010-C001+C011 = C011-C001-Dy
GCoord Dxyz; ///< Dxyz = - C000 + C100 + C010 - C110 + C001 - C101 - C011 + C111 = C001 - C101 - C011 + C111 - Dxy
/// @}
/// Update the deformation precomputed values
void updateDeform();
GCoord center; ///< current center;
GSReal radius; ///< radius of enclosing sphere
vector<GCoord> deformedPoints; ///< deformed points
bool pointsUpdated; ///< true the deformedPoints vector has been updated with the latest positions
void updatePoints(); ///< Update the deformedPoints position if not done yet (i.e. if pointsUpdated==false)
bool facesUpdated; ///< true the faces plane vector has been updated with the latest positions
void updateFaces(); ///< Update the face planes if not done yet (i.e. if facesUpdated==false)
/// Compute the barycentric coordinates of a point from its initial position
DistanceGrid::Coord baryCoords(const GCoord& c) const
{
return GCoord( (c[0]-initP0[0])*invDP[0],
(c[1]-initP0[1])*invDP[1],
(c[2]-initP0[2])*invDP[2]);
}
/// Compute the initial position of a point from its barycentric coordinates
GCoord initpos(const GCoord& b) const
{
return GCoord( initP0[0]+initDP[0]*b[0],
initP0[1]+initDP[1]*b[1],
initP0[2]+initDP[2]*b[2]);
}
/// Compute the deformed position of a point from its barycentric coordinates
GCoord deform(const GCoord& b) const
{
return corners[C000] + Dx*b[0] + (Dy + Dxy*b[0])*b[1] + (Dz + Dxz*b[0] + (Dyz + Dxyz*b[0])*b[1])*b[2];
}
static GSReal interp(GSReal coef, GSReal a, GSReal b)
{
return a+coef*(b-a);
}
/// deform a direction relative to a point in barycentric coordinates
GCoord deformDir(const GCoord& b, const GCoord& dir) const
{
GCoord r;
// dp/dx = Dx + Dxy*y + Dxz*z + Dxyz*y*z
r = (Dx + Dxy*b[1] + (Dxz + Dxyz*b[1])*b[2])*dir[0];
// dp/dy = Dy + Dxy*x + Dyz*z + Dxyz*x*z
r += (Dy + Dxy*b[0] + (Dyz + Dxyz*b[0])*b[2])*dir[1];
// dp/dz = Dz + Dxz*x + Dyz*y + Dxyz*x*y
r += (Dz + Dxz*b[0] + (Dyz + Dxyz*b[0])*b[1])*dir[2];
return r;
}
/// Get the local jacobian matrix of the deformation
Mat<3,3,double> Jdeform(const GCoord& b) const
{
Mat<3,3,double> J;
for (int i=0;i<3;i++)
{
// dp/dx = Dx + Dxy*y + Dxz*z + Dxyz*y*z
J[i][0] = (Dx[i] + Dxy[i]*b[1] + (Dxz[i] + Dxyz[i]*b[1])*b[2]);
// dp/dy = Dy + Dxy*x + Dyz*z + Dxyz*x*z
J[i][1] = (Dy[i] + Dxy[i]*b[0] + (Dyz[i] + Dxyz[i]*b[0])*b[2]);
// dp/dz = Dz + Dxz*x + Dyz*y + Dxyz*x*y
J[i][2] = (Dz[i] + Dxz[i]*b[0] + (Dyz[i] + Dxyz[i]*b[0])*b[1]);
}
return J;
}
/// Compute an initial estimate to the barycentric coordinate of a point given its deformed position
GCoord undeform0(const GCoord& p) const
{
GCoord b;
for (int i=0;i<3;i++)
{
GSReal b0 = faces[2*i+0]*Plane(p,1);
GSReal b1 = faces[2*i+1]*Plane(p,1);
b[i] = b0 / (b0 + b1);
}
return b;
}
/// Undeform a direction relative to a point in barycentric coordinates
GCoord undeformDir(const GCoord& b, const GCoord& dir) const
{
// we want to find b2 so that deform(b2)-deform(b) = dir
// we can use Newton's method using the jacobian of the deformation.
Mat<3,3,double> m = Jdeform(b);
Mat<3,3,double> minv;
minv.invert(m);
return minv*dir;
}
/// Compute a plane equation given 4 corners
Plane computePlane(int c00, int c10, int c01, int c11);
};
protected:
sofa::helper::vector<DeformedCube> elems;
// Input data parameters
sofa::core::objectmodel::DataFileName fileFFDDistanceGrid;
Data< double > scale;
Data< helper::fixed_array<DistanceGrid::Coord,2> > box;
Data< int > nx;
Data< int > ny;
Data< int > nz;
sofa::core::objectmodel::DataFileName dumpfilename;
core::componentmodel::behavior::MechanicalState<Vec3Types>* ffd;
topology::RegularGridTopology* ffdGrid;
void updateGrid();
public:
typedef Vec3Types InDataTypes;
typedef Vec3Types DataTypes;
typedef topology::RegularGridTopology Topology;
typedef FFDDistanceGridCollisionElement Element;
Data< bool > usePoints;
FFDDistanceGridCollisionModel();
~FFDDistanceGridCollisionModel();
core::componentmodel::behavior::MechanicalState<DataTypes>* getDeformModel() { return ffd; }
topology::RegularGridTopology* getDeformGrid() { return ffdGrid; }
// alias used by ContactMapper
core::componentmodel::behavior::MechanicalState<DataTypes>* getMechanicalState() { return ffd; }
topology::RegularGridTopology* getMeshTopology() { return ffdGrid; }
void init();
DistanceGrid* getGrid(int index=0)
{
return elems[index].grid;
}
DeformedCube& getDeformCube(int index=0)
{
return elems[index];
}
void setGrid(DistanceGrid* surf, int index=0);
// -- CollisionModel interface
void resize(int size);
/// Create or update the bounding volume hierarchy.
void computeBoundingTree(int maxDepth=0);
void draw(int index);
void draw();
};
inline FFDDistanceGridCollisionElement::FFDDistanceGridCollisionElement(FFDDistanceGridCollisionModel* model, int index)
: core::TCollisionElementIterator<FFDDistanceGridCollisionModel>(model, index)
{}
inline FFDDistanceGridCollisionElement::FFDDistanceGridCollisionElement(core::CollisionElementIterator& i)
: core::TCollisionElementIterator<FFDDistanceGridCollisionModel>(static_cast<FFDDistanceGridCollisionModel*>(i.getCollisionModel()), i.getIndex())
{
}
inline DistanceGrid* FFDDistanceGridCollisionElement::getGrid() { return model->getGrid(index); }
inline void FFDDistanceGridCollisionElement::setGrid(DistanceGrid* surf) { return model->setGrid(surf, index); }
} // namespace collision
} // namespace component
} // namespace sofa
#endif
|