This file is indexed.

/usr/include/simbody/SimTKcommon/Testing.h is in libsimbody-dev 3.4.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
#ifndef SimTK_SimTKCOMMON_TESTING_H_
#define SimTK_SimTKCOMMON_TESTING_H_

/* -------------------------------------------------------------------------- *
 *                       Simbody(tm): SimTKcommon                             *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2009-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKcommon/basics.h"
#include "SimTKcommon/Simmatrix.h"
#include "SimTKcommon/internal/Random.h"

#include <cmath>     
#include <ctime>
#include <algorithm> 
#include <iostream>

/** @file
 * This file defines a SimTK::Test class and some related macros which
 * provide functionality useful in regression tests.
 */

namespace SimTK {

/**@defgroup RegressionTesting    SimTK Regression Testing
 *
 * SimTK defines some utilities to facilitate the creation of regression
 * tests for SimTK facilities. These utilities consist of a SimTK::Test
 * class and related support macros.
 *
 * Features include:
 *      - uniform, readable output including execution times
 *      - identical comparison tests for all numerical types, scalar and composite
 *      - careful treatment of numerical tolerances using relative and absolute
 *          comparisons, with provision for size-dependent, reduced accuracy
 *          expectations for matrix operations
 *      - default tolerance varies with precision (caller can override)
 *      - convenient generation of random test data
 *      - convenient testing of required argument checking (i.e., test
 *          fails unless an exception is thrown)
 *
 * The Testing.h header file is
 * <em>not</em> automatically included with SimTKcommon.h; you have to
 * ask for it explicilty. Here's how you use this facility:
 * <pre>
 * \#include "SimTKcommon/Testing.h"
 * void myFirstSubtest() {...}
 * void myNextSubtest() {...}
 * int main() {
 *      SimTK_START_TEST("OverallTestName");
 *          SimTK_SUBTEST(myFirstSubtest);
 *          SimTK_SUBTEST(myNextSubtest);
 *      SimTK_END_TEST();
 * }
 * </pre>
 * The arguments to SimTK_SUBTEST are function names and will be
 * called with "()" appended. If your subtest functions have arguments,
 * use SimTK_SUBTEST1(name,arg) or SimTK_SUBTEST2(name,arg1,arg2) which
 * will call name(arg) or name(arg1,arg2) as appropriate.
 *
 * This will result in nice output including execution times for
 * the overall test and the individual subtests, and arrange for 
 * any exceptions raised in the tests to be caught, properly reported,
 * and cause a non-zero return from main(). If everything runs
 * successfully, main() will return 0. Here is an example of the
 * output produced:
 * <pre>
 * Starting test TestScalar ...
 *   testIsNaN            ... done. testIsNaN            time: 0ms.
 *   testIsInf            ... done. testIsInf            time: 0ms.
 *   testIsFinite         ... done. testIsFinite         time: 0ms.
 *   testSignBit          ... done. testSignBit          time: 0ms.
 *   testSign             ... done. testSign             time: 0ms.
 *   testSquareAndCube    ... done. testSquareAndCube    time: 0ms.
 * Done. TestScalar time: 15ms.
 * </pre>
 * (Admittedly the timings aren't much use in that example!)
 *
 * Within your subtests, several useful macros and static functions
 * are available. By using these macros, the resulting message will 
 * include the actual line number at which the test failure occurred.
 * <pre>
 *      SimTK_TEST(cond)             -- this is like assert(cond)
 *      SimTK_TEST_FAILED("message") -- like assert(!"message")
 *
 *      SimTK_TEST_EQ(a,b)           -- equal to within a default tolerance
 *      SimTK_TEST_NOTEQ(a,b)        -- not equal to within a default tolerance
 *
 *      SimTK_TEST_EQ_SIZE(a,b,n)    -- equal to within n * default tolerance
 *      SimTK_TEST_NOTEQ_SIZE(a,b,n) -- not equal to within n * default tolerance
 *
 *      SimTK_TEST_EQ_TOL(a,b,tol)   -- same as above with specified tolerance
 *      SimTK_TEST_NOTEQ_TOL(a,b,tol)
 *
 *      SimTK_TEST_MUST_THROW(statement)        -- we expect the statement to throw some exception
 *      SimTK_TEST_MUST_THROW_EXC(statement, exception) -- we expect a particular exception type
 *      SimTK_TEST_MUST_THROW_DEBUG(statement)  -- same as above but only checked in Debug builds
 *      SimTK_TEST_MUST_THROW_EXC_DEBUG(statement, exception) -- ditto
 * </pre>
 * The SimTK_TEST_EQ macros test scalar and composite numerical values for
 * equality to within a numerical tolerance, using both relative
 * and absolute tolerances. The default is the value of SignificantReal
 * for the underlying numerical type. For composite types the equality test is done
 * elementwise; that is, we apply it strictly to each pair of elements not
 * to an overall norm.
 *
 * The SimTK_TEST_EQ_SIZE macros allows you to specify a multiple of default
 * tolerance to be used. This is necessary for most Matrix operations since 
 * attainable accuracy falls off with the size of the matrix. Typically, if 
 * the smallest dimension of the Matrix is n, then the tolerance you should allow
 * is n*scalarTol where scalarTol is the default tolerance for a scalar
 * operation. Note that you still need to specify size when comparing 
 * Vector or scalar values if those values were produced using a matrix
 * computation.
 *
 * The SimTK_TEST_EQ_TOL macros take a user-specified tolerance value for 
 * the elementwise tests, overriding the default.
 *
 * The SimTK::Test class has a number of static methods that are useful
 * in tests. Currently these are all for generating numerical objects
 * filled with random numbers (all uniform between -1 and 1). These are:
 * <pre>
 *      randReal()      randFloat()     randDouble()
 *      randComplex()   randConjugate()
 *      randVec<M>()    randRow<N>()    randMat<M,N>()  randSymMat<N>()
 *      randVector(m)   randMatrix(m,n)
 *      randVec3()      randMat33()
 *      randSpatialVec() randSpatialMat()
 *      randRotation()  randTransform()
 * </pre>
 * These are invoked Test::randReal() etc.
 *
 * @{
 */


/// This is the main class to support testing. Objects of this type are
/// created by the SimTK_START_TEST macro; don't allocate them directly.
/// The class name appears directly in tests only for access to its 
/// static members like Test::randMatrix().
class Test {
public:
    class Subtest;
    Test(const std::string& name) : testName(name)
    {
        std::clog << "Starting test " << testName << " ...\n";
        startTime = std::clock(); 
    }
    ~Test() {
        std::clog << "Done. " << testName << " time: " 
                  << 1000*(std::clock()-startTime)/CLOCKS_PER_SEC << "ms.\n";
    }

    template <class T>
    static double defTol() {return (double)NTraits<typename CNT<T>::Precision>::getSignificant();}

    // For dissimilar types, the default tolerance is the narrowest of the two.
    template <class T1, class T2>
    static double defTol2() {return std::max(defTol<T1>(), defTol<T2>());}

    // Scale by the magnitude of the quantities being compared, so that we don't
    // ask for unreasonable precision. For magnitudes near zero, we'll be satisfied
    // if both are very small without demanding that they must also be relatively
    // close. That is, we use a relative tolerance for big numbers and an absolute
    // tolerance for small ones.
    static bool numericallyEqual(float v1, float v2, int n, double tol=defTol<float>()) {
        const float scale = n*std::max(std::max(std::abs(v1), std::abs(v2)), 1.0f);
        return std::abs(v1-v2) < scale*(float)tol;
    }
    static bool numericallyEqual(double v1, double v2, int n, double tol=defTol<double>()) {
        const double scale = n*std::max(std::max(std::abs(v1), std::abs(v2)), 1.0);
        return std::abs(v1-v2) < scale*(double)tol;
    }
    static bool numericallyEqual(long double v1, long double v2, int n, double tol=defTol<long double>()) {
        const long double scale = n*std::max(std::max(std::abs(v1), std::abs(v2)), 1.0l);
        return std::abs(v1-v2) < scale*(long double)tol;
    }

    // For integers we ignore tolerance.
    static bool numericallyEqual(int i1, int i2, int n, double tol=0) {return i1==i2;}
    static bool numericallyEqual(unsigned u1, unsigned u2, int n, double tol=0) {return u1==u2;}

    // Mixed floating types use default tolerance for the narrower type.
    static bool numericallyEqual(float v1, double v2, int n, double tol=defTol<float>())
    {   return numericallyEqual((double)v1, v2, n, tol); }
    static bool numericallyEqual(double v1, float v2, int n, double tol=defTol<float>())
    {   return numericallyEqual(v1, (double)v2, n, tol); }
    static bool numericallyEqual(float v1, long double v2, int n, double tol=defTol<float>())
    {   return numericallyEqual((long double)v1, v2, n, tol); }
    static bool numericallyEqual(long double v1, float v2, int n, double tol=defTol<float>())
    {   return numericallyEqual(v1, (long double)v2, n, tol); }
    static bool numericallyEqual(double v1, long double v2, int n, double tol=defTol<double>())
    {   return numericallyEqual((long double)v1, v2, n, tol); }
    static bool numericallyEqual(long double v1, double v2, int n, double tol=defTol<double>())
    {   return numericallyEqual(v1, (long double)v2, n, tol); }

    // Mixed int/floating just upgrades int to floating type.
    static bool numericallyEqual(int i1, float f2, int n, double tol=defTol<float>())
    {   return numericallyEqual((float)i1,f2,n,tol); }
    static bool numericallyEqual(float f1, int i2, int n, double tol=defTol<float>())
    {   return numericallyEqual(f1,(float)i2,n,tol); }
    static bool numericallyEqual(unsigned i1, float f2, int n, double tol=defTol<float>())
    {   return numericallyEqual((float)i1,f2,n,tol); }
    static bool numericallyEqual(float f1, unsigned i2, int n, double tol=defTol<float>())
    {   return numericallyEqual(f1,(float)i2,n,tol); }
    static bool numericallyEqual(int i1, double f2, int n, double tol=defTol<double>())
    {   return numericallyEqual((double)i1,f2,n,tol); }
    static bool numericallyEqual(double f1, int i2, int n, double tol=defTol<double>())
    {   return numericallyEqual(f1,(double)i2,n,tol); }
    static bool numericallyEqual(unsigned i1, double f2, int n, double tol=defTol<double>())
    {   return numericallyEqual((double)i1,f2,n,tol); }
    static bool numericallyEqual(double f1, unsigned i2, int n, double tol=defTol<double>())
    {   return numericallyEqual(f1,(double)i2,n,tol); }
    static bool numericallyEqual(int i1, long double f2, int n, double tol=defTol<long double>())
    {   return numericallyEqual((long double)i1,f2,n,tol); }
    static bool numericallyEqual(long double f1, int i2, int n, double tol=defTol<long double>())
    {   return numericallyEqual(f1,(long double)i2,n,tol); }
    static bool numericallyEqual(unsigned i1, long double f2, int n, double tol=defTol<long double>())
    {   return numericallyEqual((long double)i1,f2,n,tol); }
    static bool numericallyEqual(long double f1, unsigned i2, int n, double tol=defTol<long double>())
    {   return numericallyEqual(f1,(long double)i2,n,tol); }

    template <class P>
    static bool numericallyEqual(const std::complex<P>& v1, const std::complex<P>& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(v1.real(), v2.real(), n, tol)
            && numericallyEqual(v1.imag(), v2.imag(), n, tol);
    }
    template <class P>
    static bool numericallyEqual(const conjugate<P>& v1, const conjugate<P>& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(v1.real(), v2.real(), n, tol)
            && numericallyEqual(v1.imag(), v2.imag(), n, tol);
    }
    template <class P>
    static bool numericallyEqual(const std::complex<P>& v1, const conjugate<P>& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(v1.real(), v2.real(), n, tol)
            && numericallyEqual(v1.imag(), v2.imag(), n, tol);
    }
    template <class P>
    static bool numericallyEqual(const conjugate<P>& v1, const std::complex<P>& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(v1.real(), v2.real(), n, tol)
            && numericallyEqual(v1.imag(), v2.imag(), n, tol);
    }
    template <class P>
    static bool numericallyEqual(const negator<P>& v1, const negator<P>& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(-v1, -v2, n, tol);  // P, P
    }
    template <class P>
    static bool numericallyEqual(const P& v1, const negator<P>& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(-v1, -v2, n, tol);  // P, P
    }
    template <class P>
    static bool numericallyEqual(const negator<P>& v1, const P& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(-v1, -v2, n, tol);  // P, P
    }
    template <class P>
    static bool numericallyEqual(const negator<std::complex<P> >& v1, const conjugate<P>& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(-v1, -v2, n, tol);  // complex, conjugate
    }
    template <class P>
    static bool numericallyEqual(const negator<conjugate<P> >& v1, const std::complex<P>& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(-v1, -v2, n, tol);  // conjugate, complex
    }
    template <class P>
    static bool numericallyEqual(const std::complex<P>& v1, const negator<conjugate<P> >& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(-v1, -v2, n, tol); // complex, conjugate
    }
    template <class P>
    static bool numericallyEqual(const conjugate<P>& v1, const negator<std::complex<P> >& v2, int n, double tol=defTol<P>()) {
        return numericallyEqual(-v1, -v2, n, tol); // conjugate, complex
    }
    template <int M, class E1, int S1, class E2, int S2>
    static bool numericallyEqual(const Vec<M,E1,S1>& v1, const Vec<M,E2,S2>& v2, int n, double tol=(defTol2<E1,E2>())) {
        for (int i=0; i<M; ++i) if (!numericallyEqual(v1[i],v2[i], n, tol)) return false;
        return true;
    }
    template <int N, class E1, int S1, class E2, int S2>
    static bool numericallyEqual(const Row<N,E1,S1>& v1, const Row<N,E2,S2>& v2, int n, double tol=(defTol2<E1,E2>())) {
        for (int j=0; j<N; ++j) if (!numericallyEqual(v1[j],v2[j], n, tol)) return false;
        return true;
    }
    template <int M, int N, class E1, int CS1, int RS1, class E2, int CS2, int RS2>
    static bool numericallyEqual(const Mat<M,N,E1,CS1,RS1>& v1, const Mat<M,N,E2,CS2,RS2>& v2, int n, double tol=(defTol2<E1,E2>())) {
        for (int j=0; j<N; ++j) if (!numericallyEqual(v1(j),v2(j), n, tol)) return false;
        return true;
    }
    template <int N, class E1, int S1, class E2, int S2>
    static bool numericallyEqual(const SymMat<N,E1,S1>& v1, const SymMat<N,E2,S2>& v2, int n, double tol=(defTol2<E1,E2>())) {
        return numericallyEqual(v1.getAsVec(), v2.getAsVec(), n, tol);
    }
    template <class E1, class E2>
    static bool numericallyEqual(const VectorView_<E1>& v1, const VectorView_<E2>& v2, int n, double tol=(defTol2<E1,E2>())) {
        if (v1.size() != v2.size()) return false;
        for (int i=0; i < v1.size(); ++i)
            if (!numericallyEqual(v1[i], v2[i], n, tol)) return false;
        return true;
    }
    template <class E1, class E2>
    static bool numericallyEqual(const Vector_<E1>& v1, const Vector_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
    {   return numericallyEqual((const VectorView_<E1>&)v1, (const VectorView_<E2>&)v2, n, tol); }
    template <class E1, class E2>
    static bool numericallyEqual(const Vector_<E1>& v1, const VectorView_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
    {   return numericallyEqual((const VectorView_<E1>&)v1, (const VectorView_<E2>&)v2, n, tol); }
    template <class E1, class E2>
    static bool numericallyEqual(const VectorView_<E1>& v1, const Vector_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
    {   return numericallyEqual((const VectorView_<E1>&)v1, (const VectorView_<E2>&)v2, n, tol); }

    template <class E1, class E2>
    static bool numericallyEqual(const RowVectorView_<E1>& v1, const RowVectorView_<E2>& v2, int n, double tol=(defTol2<E1,E2>())) {
        if (v1.size() != v2.size()) return false;
        for (int i=0; i < v1.size(); ++i)
            if (!numericallyEqual(v1[i], v2[i], n, tol)) return false;
        return true;
    }
    template <class E1, class E2>
    static bool numericallyEqual(const RowVector_<E1>& v1, const RowVector_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
    {   return numericallyEqual((const RowVectorView_<E1>&)v1, (const RowVectorView_<E2>&)v2, n, tol); }
    template <class E1, class E2>
    static bool numericallyEqual(const RowVector_<E1>& v1, const RowVectorView_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
    {   return numericallyEqual((const RowVectorView_<E1>&)v1, (const RowVectorView_<E2>&)v2, n, tol); }
    template <class E1, class E2>
    static bool numericallyEqual(const RowVectorView_<E1>& v1, const RowVector_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
    {   return numericallyEqual((const RowVectorView_<E1>&)v1, (const RowVectorView_<E2>&)v2, n, tol); }

    template <class E1, class E2>
    static bool numericallyEqual(const MatrixView_<E1>& v1, const MatrixView_<E2>& v2, int n, double tol=(defTol2<E1,E2>())) {
        if (v1.nrow() != v2.nrow() || v1.ncol() != v2.ncol()) return false;
        for (int j=0; j < v1.ncol(); ++j)
            if (!numericallyEqual(v1(j), v2(j), n, tol)) return false;
        return true;
    }
    template <class E1, class E2>
    static bool numericallyEqual(const Matrix_<E1>& m1, const Matrix_<E2>& m2, int n, double tol=(defTol2<E1,E2>()))
    {   return numericallyEqual((const MatrixView_<E1>&)m1, (const MatrixView_<E2>&)m2, n, tol); }
    template <class E1, class E2>
    static bool numericallyEqual(const Matrix_<E1>& m1, const MatrixView_<E2>& m2, int n, double tol=(defTol2<E1,E2>()))
    {   return numericallyEqual((const MatrixView_<E1>&)m1, (const MatrixView_<E2>&)m2, n, tol); }
    template <class E1, class E2>
    static bool numericallyEqual(const MatrixView_<E1>& m1, const Matrix_<E2>& m2, int n, double tol=(defTol2<E1,E2>()))
    {   return numericallyEqual((const MatrixView_<E1>&)m1, (const MatrixView_<E2>&)m2, n, tol); }

    template <class P>
    static bool numericallyEqual(const Rotation_<P>& R1, const Rotation_<P>& R2, int n, double tol=defTol<P>()) {
        return R1.isSameRotationToWithinAngle(R2, (Real)(n*tol));
    }

    template <class P>
    static bool numericallyEqual(const Transform_<P>& T1, const Transform_<P>& T2, int n, double tol=defTol<P>()) {
        return numericallyEqual(T1.R(), T2.R(), n, tol)
            && numericallyEqual(T1.p(), T2.p(), n, tol);
    }

    template <class P>
    static bool numericallyEqual(const UnitInertia_<P>& G1, const UnitInertia_<P>& G2, int n, double tol=defTol<P>()) {
        return numericallyEqual(G1.asSymMat33(),G2.asSymMat33(), n, tol);
    }

    template <class P>
    static bool numericallyEqual(const Inertia_<P>& I1, const Inertia_<P>& I2, int n, double tol=defTol<P>()) {
        return numericallyEqual(I1.asSymMat33(),I2.asSymMat33(), n, tol);
    }

    // Random numbers
    static Real randReal() {
        static Random::Uniform rand(-1,1);
        return rand.getValue();
    }
    static Complex randComplex() {return Complex(randReal(),randReal());}
    static Conjugate randConjugate() {return Conjugate(randReal(),randReal());}
    static float randFloat() {return (float)randReal();}
    static double randDouble() {return (double)randReal();}

    template <int M> static Vec<M> randVec() 
    {   Vec<M> v; for (int i=0; i<M; ++i) v[i]=randReal(); return v;}
    template <int N> static Row<N> randRow() {return ~randVec<N>();}
    template <int M, int N> static Mat<M,N> randMat()
    {   Mat<M,N> m; for (int j=0; j<N; ++j) m(j)=randVec<M>(); return m;}
    template <int N> static SymMat<N> randSymMat() 
    {   SymMat<N> s; s.updAsVec() = randVec<N*(N+1)/2>(); return s; }

    static Vector randVector(int m)
    {   Vector v(m); for (int i=0; i<m; ++i) v[i]=randReal(); return v;}
    static Matrix randMatrix(int m, int n)
    {   Matrix M(m,n); for (int j=0; j<n; ++j) M(j)=randVector(m); return M;}

    static Vec3 randVec3() {return randVec<3>();}
    static Mat33 randMat33() {return randMat<3,3>();}
    static SymMat33 randSymMat33() {return randSymMat<3>();}
    static SpatialVec randSpatialVec() {
        return SpatialVec(randVec3(), randVec3());
    }
    static SpatialMat randSpatialMat() {
        return SpatialMat(randMat33(), randMat33(),
                          randMat33(), randMat33());
    }
    static Rotation randRotation() {
        // Generate random angle and random axis to rotate around.
        return Rotation((Pi/2)*randReal(), randVec3());
    }
    static Transform randTransform() {
        return Transform(randRotation(), randVec3());
    }
private:
    std::clock_t startTime;
    std::string  testName;
};

/// Internal utility class for generating test messages for subtests.
class Test::Subtest {
public:
    Subtest(const std::string& name) : subtestName(name)
    {
        char padded[128];
        sprintf(padded, "%-20s", name.c_str());
        paddedName = std::string(padded);
        std::clog << "  " << paddedName << " ... " << std::flush;
        startTime = std::clock(); 
    }
    ~Subtest() {
        std::clog << "done. " << paddedName << " time: " 
                  << 1000*(std::clock()-startTime)/CLOCKS_PER_SEC << "ms.\n";
    }
private:
    std::clock_t startTime;
    std::string  subtestName;
    std::string  paddedName; // name plus some blanks
};

} // namespace SimTK

/// Invoke this macro before anything else in your test's main().
#define SimTK_START_TEST(testName)      \
    SimTK::Test simtk_test_(testName);  \
    try {

/// Invoke this macro as the last thing in your test's main().
#define SimTK_END_TEST() \
    } catch(const std::exception& e) {                  \
        std::cerr << "Test failed due to exception: "   \
                  << e.what() << std::endl;             \
        return 1;                                       \
    } catch(...) {                                      \
        std::cerr << "Test failed due to unrecognized exception.\n";    \
        return 1;                                       \
    }                                                   \
    return 0;

/// Invoke a subtest in the form of a no-argument function, arranging for some 
/// friendly output and timing information.
#define SimTK_SUBTEST(testFunction) \
    do {SimTK::Test::Subtest sub(#testFunction); (testFunction)();} while(false)
/// Invoke a subtest in the form of a 1-argument function, arranging for some 
/// friendly output and timing information.
#define SimTK_SUBTEST1(testFunction,arg1) \
    do {SimTK::Test::Subtest sub(#testFunction); (testFunction)(arg1);} while(false)
/// Invoke a subtest in the form of a 2-argument function, arranging for some 
/// friendly output and timing information.
#define SimTK_SUBTEST2(testFunction,arg1,arg2) \
    do {SimTK::Test::Subtest sub(#testFunction); (testFunction)(arg1,arg2);} while(false)
/// Invoke a subtest in the form of a 3-argument function, arranging for some 
/// friendly output and timing information.
#define SimTK_SUBTEST3(testFunction,arg1,arg2,arg3) \
    do {SimTK::Test::Subtest sub(#testFunction); (testFunction)(arg1,arg2,arg3);} while(false)
/// Invoke a subtest in the form of a 4-argument function, arranging for some 
/// friendly output and timing information.
#define SimTK_SUBTEST4(testFunction,arg1,arg2,arg3,arg4) \
    do {SimTK::Test::Subtest sub(#testFunction); (testFunction)(arg1,arg2,arg3,arg4);} while(false)

/// Test that some condition holds and complain if it doesn't.
#define SimTK_TEST(cond) {SimTK_ASSERT_ALWAYS((cond), "Test condition failed.");}

/// Call this if you have determined that a test case has failed and just need
/// to report it and die. Pass the message as a string in quotes.
#define SimTK_TEST_FAILED(msg) {SimTK_ASSERT_ALWAYS(!"Test case failed.", msg);}

/// Call this if you have determined that a test case has failed and just need
/// to report it and die. The message is a printf format string in quotes; here
/// with one argument expected.
#define SimTK_TEST_FAILED1(fmt,a1) {SimTK_ASSERT1_ALWAYS(!"Test case failed.",fmt,a1);}

/// Call this if you have determined that a test case has failed and just need
/// to report it and die. The message is a printf format string in quotes; here
/// with two arguments expected.
#define SimTK_TEST_FAILED2(fmt,a1,a2) {SimTK_ASSERT2_ALWAYS(!"Test case failed.",fmt,a1,a2);}

/// Test that two numerical values are equal to within a reasonable numerical
/// error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the test is performed elementwise.
#define SimTK_TEST_EQ(v1,v2)    \
    {SimTK_ASSERT_ALWAYS(SimTK::Test::numericallyEqual((v1),(v2),1),   \
     "Test values should have been numerically equivalent at default tolerance.");}

/// Test that two numerical values are equal to within a specified multiple of the
/// default error tolerance.
#define SimTK_TEST_EQ_SIZE(v1,v2,n)    \
    {SimTK_ASSERT1_ALWAYS(SimTK::Test::numericallyEqual((v1),(v2),(n)),   \
     "Test values should have been numerically equivalent at size=%d times default tolerance.",(n));}

/// Test that two numerical values are equal to within a specified numerical
/// error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the test is performed elementwise.
#define SimTK_TEST_EQ_TOL(v1,v2,tol)    \
    {SimTK_ASSERT1_ALWAYS(SimTK::Test::numericallyEqual((v1),(v2),1,(tol)),   \
     "Test values should have been numerically equivalent at tolerance=%g.",(tol));}

/// Test that two numerical values are NOT equal to within a reasonable numerical
/// error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the equality test is performed elementwise.
#define SimTK_TEST_NOTEQ(v1,v2)    \
    {SimTK_ASSERT_ALWAYS(!SimTK::Test::numericallyEqual((v1),(v2),1),   \
     "Test values should NOT have been numerically equivalent (at default tolerance).");}

/// Test that two numerical values are NOT equal to within a specified multiple of
/// the default error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the equality test is performed elementwise.
#define SimTK_TEST_NOTEQ_SIZE(v1,v2,n)    \
    {SimTK_ASSERT1_ALWAYS(!SimTK::Test::numericallyEqual((v1),(v2),(n)),   \
     "Test values should NOT have been numerically equivalent at size=%d times default tolerance.",(n));}

/// Test that two numerical values are NOT equal to within a specified numerical
/// error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the equality test is performed elementwise.
#define SimTK_TEST_NOTEQ_TOL(v1,v2,tol)    \
    {SimTK_ASSERT1_ALWAYS(!SimTK::Test::numericallyEqual((v1),(v2),1,(tol)),   \
     "Test values should NOT have been numerically equivalent at tolerance=%g.",(tol));}

/// Test that the supplied statement throws an std::exception of some kind.
#define SimTK_TEST_MUST_THROW(stmt)             \
    do {int threw=0; try {stmt;}                \
        catch(const std::exception&){threw=1;}  \
        catch(...){threw=2;}                    \
        if (threw==0) SimTK_TEST_FAILED1("Expected statement\n----\n%s\n----\n  to throw an exception but it did not.",#stmt); \
        if (threw==2) SimTK_TEST_FAILED1("Expected statement\n%s\n  to throw an std::exception but it threw something else.",#stmt); \
    }while(false)

/// Test that the supplied statement throws a particular exception.
#define SimTK_TEST_MUST_THROW_EXC(stmt,exc)     \
    do {int threw=0; try {stmt;}                \
        catch(const exc&){threw=1;}             \
        catch(...){threw=2;}                    \
        if (threw==0) SimTK_TEST_FAILED1("Expected statement\n----\n%s\n----\n  to throw an exception but it did not.",#stmt); \
        if (threw==2) SimTK_TEST_FAILED2("Expected statement\n----\n%s\n----\n  to throw exception type %s but it threw something else.",#stmt,#exc); \
    }while(false)

/// Allow the supplied statement to throw any std::exception without failing.
#define SimTK_TEST_MAY_THROW(stmt)             \
    do {int threw=0; try {stmt;}                \
        catch(const std::exception&){threw=1;}  \
        catch(...){threw=2;}                    \
        if (threw==2) SimTK_TEST_FAILED1("Expected statement\n%s\n  to throw an std::exception but it threw something else.",#stmt); \
    }while(false)

/// Allow the supplied statement to throw a particular exception without failing.
#define SimTK_TEST_MAY_THROW_EXC(stmt,exc)     \
    do {int threw=0; try {stmt;}                \
        catch(const exc&){threw=1;}             \
        catch(...){threw=2;}                    \
        if (threw==2) SimTK_TEST_FAILED2("Expected statement\n----\n%s\n----\n  to throw exception type %s but it threw something else.",#stmt,#exc); \
    }while(false)

// When we're only required to throw in Debug, we have to suppress the
// test case altogether in Release because it may cause damage. 
#if defined(NDEBUG)
    /// Include a bad statement when in Debug and insist that it get caught,
    /// but don't include the statement at all in Release.
    #define SimTK_TEST_MUST_THROW_DEBUG(stmt)
    /// Include a bad statement when in Debug and insist that it get caught,
    /// but don't include the statement at all in Release.
    #define SimTK_TEST_MUST_THROW_EXC_DEBUG(stmt,exc)
#else
    /// Include a bad statement when in Debug and insist that it get caught,
    /// but don't include the statement at all in Release.
    #define SimTK_TEST_MUST_THROW_DEBUG(stmt) SimTK_TEST_MUST_THROW(stmt)
    /// Include a bad statement when in Debug and insist that it get caught,
    /// but don't include the statement at all in Release.
    #define SimTK_TEST_MUST_THROW_EXC_DEBUG(stmt,exc) \
                SimTK_TEST_MUST_THROW_EXC(stmt,exc)
#endif




//  End of Regression testing group.
/// @}

#endif // SimTK_SimTKCOMMON_TESTING_H_