/usr/include/root/TQpProbBase.h is in libroot-math-quadp-dev 5.34.19+dfsg-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | // @(#)root/quadp:$Id$
// Author: Eddy Offermann May 2004
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
/*************************************************************************
* Parts of this file are copied from the OOQP distribution and *
* are subject to the following license: *
* *
* COPYRIGHT 2001 UNIVERSITY OF CHICAGO *
* *
* The copyright holder hereby grants you royalty-free rights to use, *
* reproduce, prepare derivative works, and to redistribute this software*
* to others, provided that any changes are clearly documented. This *
* software was authored by: *
* *
* E. MICHAEL GERTZ gertz@mcs.anl.gov *
* Mathematics and Computer Science Division *
* Argonne National Laboratory *
* 9700 S. Cass Avenue *
* Argonne, IL 60439-4844 *
* *
* STEPHEN J. WRIGHT swright@cs.wisc.edu *
* Computer Sciences Department *
* University of Wisconsin *
* 1210 West Dayton Street *
* Madison, WI 53706 FAX: (608)262-9777 *
* *
* Any questions or comments may be directed to one of the authors. *
* *
* ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF *
* ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND *
* OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT *
* WITH THE DEPARTMENT OF ENERGY. *
*************************************************************************/
#ifndef ROOT_TQpProbBase
#define ROOT_TQpProbBase
#ifndef ROOT_TError
#include "TError.h"
#endif
#ifndef ROOT_TQpVar
#include "TQpVar.h"
#endif
#ifndef ROOT_TQpDataBase
#include "TQpDataBase.h"
#endif
#ifndef ROOT_TQpLinSolverBase
#include "TQpLinSolverBase.h"
#endif
#ifndef ROOT_TQpResidual
#include "TQpResidual.h"
#endif
#ifndef ROOT_TMatrixD
#include "TMatrixD.h"
#endif
///////////////////////////////////////////////////////////////////////////
// //
// default general problem formulation: //
// //
// minimize c' x + ( 1/2 ) x' * Q x ; //
// subject to A x = b ; //
// clo <= C x <= cup ; //
// xlo <= x <= xup ; //
// //
// The general linear equality constraints must have either an upper //
// or lower bound, but need not have both bounds. The variables may have//
// no bounds; an upper bound; a lower bound or both an upper and lower //
// bound. //
// //
// However, for many (possibly most) QP's, the matrices in the //
// formulation have structure that may be exploited to solve the //
// problem more efficiently. This abstract problem formulation contains //
// a setup such that one can derive and add special formulations . //
// The optimality conditions of the simple QP defined above are //
// follows: //
// //
// rQ = c + Q * x - A' * y - C' * z = 0 //
// rA = A * x - b = 0 //
// rC = C * x - s - d = 0 //
// r3 = S * z = 0 //
// s, z >= 0 //
// //
// Where rQ, rA, rC and r3 newly defined quantities known as residual //
// vectors and x, y, z and s are variables of used in solution of the //
// QPs. //
// //
///////////////////////////////////////////////////////////////////////////
class TQpLinSolverBase;
class TQpProbBase : public TObject
{
public:
Int_t fNx; // number of elements in x
Int_t fMy; // number of rows in A and b
Int_t fMz; // number of rows in C
TQpProbBase();
TQpProbBase(Int_t nx,Int_t my,Int_t mz);
TQpProbBase(const TQpProbBase &another);
virtual ~TQpProbBase() {}
virtual TQpDataBase *MakeData (TVectorD &c,
TMatrixDBase &Q_in,
TVectorD &xlo, TVectorD &ixlo,
TVectorD &xup, TVectorD &ixup,
TMatrixDBase &A_in,TVectorD &bA,
TMatrixDBase &C_in,
TVectorD &clo, TVectorD &iclo,
TVectorD &cup, TVectorD &icup) = 0;
virtual TQpResidual *MakeResiduals(const TQpDataBase *data) = 0;
virtual TQpVar *MakeVariables(const TQpDataBase *data) = 0;
virtual TQpLinSolverBase *MakeLinSys (const TQpDataBase *data) = 0;
virtual void JoinRHS (TVectorD &rhs_in,TVectorD &rhs1_in,TVectorD &rhs2_in,TVectorD &rhs3_in) = 0;
virtual void SeparateVars(TVectorD &x_in,TVectorD &y_in,TVectorD &z_in,TVectorD &vars_in) = 0;
TQpProbBase &operator= (const TQpProbBase &source);
ClassDef(TQpProbBase,1) // Qp problem formulation base class
};
#endif
|