This file is indexed.

/usr/include/roboptim/core/finite-difference-gradient.hxx is in libroboptim-core-dev 2.0-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
// Copyright (C) 2009 by Thomas Moulard, AIST, CNRS, INRIA.
//
// This file is part of the roboptim.
//
// roboptim is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// roboptim is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with roboptim.  If not, see <http://www.gnu.org/licenses/>.

#ifndef ROBOPTIM_CORE_FINITE_DIFFERENCE_GRADIENT_HXX
# define ROBOPTIM_CORE_FINITE_DIFFERENCE_GRADIENT_HXX
# include "boost/type_traits/is_same.hpp"
# include <boost/mpl/same_as.hpp>

namespace roboptim
{
  template <typename T>
  BadGradient<T>::BadGradient (const vector_t& x,
			       const gradient_t& analyticalGradient,
			       const gradient_t& finiteDifferenceGradient,
			       const value_type& threshold)
    : std::runtime_error ("bad gradient"),
      x_ (x),
      analyticalGradient_ (analyticalGradient),
      finiteDifferenceGradient_ (finiteDifferenceGradient),
      maxDelta_ (),
      maxDeltaComponent_ (),
      threshold_ (threshold)
  {
    assert (analyticalGradient.size () == finiteDifferenceGradient.size ());

    maxDelta_ = -std::numeric_limits<Function::value_type>::infinity ();
    for (size_type i = 0; i < analyticalGradient.size (); ++i)
      {
	value_type delta =
	  std::fabs (analyticalGradient[i] - finiteDifferenceGradient[i]);

	if (delta > maxDelta_)
	  {
	    maxDelta_ = delta;
	    maxDeltaComponent_ = i;
	  }
      }
  }

  template <typename T>
  BadGradient<T>::~BadGradient () throw ()
  {}

  template <typename T>
  std::ostream&
  BadGradient<T>::print (std::ostream& o) const throw ()
  {
    o << this->what () << incindent << iendl
      << "X: " << x_ << iendl
      << "Analytical gradient: " << analyticalGradient_ << iendl
      << "Finite difference gradient: " << finiteDifferenceGradient_
      << iendl
      << "Max. delta: " << maxDelta_ << iendl
      << "Max. delta in component: " << maxDeltaComponent_ << iendl
      << "Max. allowed delta: " << threshold_ << decindent;
    return o;
  }

  template <typename T>
  std::ostream&
  operator<< (std::ostream& o, const BadGradient<T>& bg)
  {
    return bg.print (o);
  }

  template <typename T, typename FdgPolicy>
  GenericFiniteDifferenceGradient<T, FdgPolicy>::GenericFiniteDifferenceGradient
  (const GenericFunction<T>& adaptee,
   typename GenericDifferentiableFunction<T>::value_type epsilon)
    throw ()
    : GenericDifferentiableFunction<T>
      (adaptee.inputSize (), adaptee.outputSize ()),
      FdgPolicy (),
      adaptee_ (adaptee),
      epsilon_ (epsilon),
      xEps_ (adaptee.inputSize ())
  {
    // Avoid meaningless values for epsilon such as 0 or NaN.
    assert (epsilon != 0. && epsilon == epsilon);
  }

  template <typename T, typename FdgPolicy>
  GenericFiniteDifferenceGradient<
    T, FdgPolicy>::~GenericFiniteDifferenceGradient () throw ()
  {
  }

  template <typename T, typename FdgPolicy>
  void
  GenericFiniteDifferenceGradient<T, FdgPolicy>::impl_compute
  (result_t& result, const argument_t& argument) const throw ()
  {
    adaptee_ (result, argument);
  }

  template <typename T, typename FdgPolicy>
  void
  GenericFiniteDifferenceGradient<T, FdgPolicy>::impl_gradient
  (gradient_t& gradient,
   const argument_t& argument,
   size_type idFunction) const throw ()
  {
#ifndef ROBOPTIM_DO_NOT_CHECK_ALLOCATION
    Eigen::internal::set_is_malloc_allowed (true);
#endif //! ROBOPTIM_DO_NOT_CHECK_ALLOCATION
    this->computeGradient (adaptee_, epsilon_, gradient,
			   argument, idFunction, xEps_);
  }

  template <typename T>
  bool
  checkGradient
  (const GenericDifferentiableFunction<T>& function,
   typename GenericDifferentiableFunction<T>::size_type functionId,
   const typename GenericDifferentiableFunction<T>::vector_t& x,
   typename GenericDifferentiableFunction<T>::value_type threshold)
    throw ()
  {
    GenericFiniteDifferenceGradient<T> fdfunction (function);
    typename GenericDifferentiableFunction<T>::gradient_t grad =
      function.gradient (x, functionId);
    typename GenericDifferentiableFunction<T>::gradient_t fdgrad =
      fdfunction.gradient (x, functionId);

    return grad.isApprox (fdgrad, threshold);
    return true;
  }

  template <typename T>
  void
  checkGradientAndThrow
  (const GenericDifferentiableFunction<T>& function,
   typename GenericDifferentiableFunction<T>::size_type functionId,
   const typename GenericDifferentiableFunction<T>::vector_t& x,
   typename GenericDifferentiableFunction<T>::value_type threshold)
    throw (BadGradient<T>)
  {
    GenericFiniteDifferenceGradient<T> fdfunction (function);
    DifferentiableFunction::gradient_t grad =
      function.gradient (x, functionId);
    DifferentiableFunction::gradient_t fdgrad =
      fdfunction.gradient (x, functionId);

    if (!checkGradient (function, functionId, x, threshold))
      throw BadGradient<T> (x, grad, fdgrad, threshold);
  }

  namespace detail
  {
    template <typename T>
    void
    compute_deriv (const GenericFunction<T>& adaptee,
		   typename GenericFunction<T>::size_type j,
		   double h,
		   double& result,
		   double& round,
		   double& trunc,
		   const typename GenericFunction<T>::argument_t& argument,
		   typename GenericFunction<T>::size_type idFunction,
		   typename GenericFunction<T>::argument_t& xEps);

    /// Algorithm from the Gnu Scientific Library.
    template <typename T>
    void
    compute_deriv (const GenericFunction<T>& adaptee,
		   typename GenericFunction<T>::size_type j,
		   double h,
		   double& result,
		   double& round,
		   double& trunc,
		   const typename GenericFunction<T>::argument_t& argument,
		   typename GenericFunction<T>::size_type idFunction,
		   typename GenericFunction<T>::argument_t& xEps)
    {
      /* Compute the derivative using the 5-point rule (x-h, x-h/2, x,
	 x+h/2, x+h). Note that the central point is not used.

	 Compute the error using the difference between the 5-point and
	 the 3-point rule (x-h,x,x+h). Again the central point is not
	 used. */

      xEps = argument;

      xEps[j] = argument[j] - h;
      double fm1 = adaptee (xEps)[idFunction];
      xEps[j] = argument[j] + h;
      double fp1 = adaptee (xEps)[idFunction];
      xEps[j] = argument[j] - (h / 2.);
      double fmh = adaptee (xEps)[idFunction];
      xEps[j] = argument[j] + (h / 2.);
      double fph = adaptee (xEps)[idFunction];

      double r3 = .5 * (fp1 - fm1);
      double r5 = (4. / 3.) * (fph - fmh) - (1. / 3.) * r3;

      double e3 = (std::fabs (fp1) + std::fabs (fm1))
	* std::numeric_limits<double>::epsilon ();
      double e5 = 2. * (std::fabs (fph) + std::fabs (fmh))
	* std::numeric_limits<double>::epsilon () + e3;

      /* The next term is due to finite precision in x+h = O (eps * x) */

      double dy =
	std::max (std::fabs (r3 / h), std::fabs (r5 / h))
	* (std::fabs (argument[j]) / h)
	* std::numeric_limits<double>::epsilon ();

      /* The truncation error in the r5 approximation itself is O(h^4).
	 However, for safety, we estimate the error from r5-r3, which is
	 O(h^2).  By scaling h we will minimise this estimated error, not
	 the actual truncation error in r5. */

      result = r5 / h;
      trunc = std::fabs ((r5 - r3) / h); // Estimated truncation error O(h^2)
      round = std::fabs (e5 / h) + dy; // Rounding error (cancellations)
    }

  } // end of namespace detail.

  namespace finiteDifferenceGradientPolicies
  {
    template <>
    inline void
    Simple<EigenMatrixSparse>::computeGradient
    (const GenericFunction<EigenMatrixSparse>& adaptee,
     value_type epsilon,
     gradient_t& gradient,
     const argument_t& argument,
     size_type idFunction,
     argument_t& xEps) const throw ()
    {
      assert (adaptee.outputSize () - idFunction > 0);
      result_t res = adaptee (argument);
      for (size_type j = 0; j < adaptee.inputSize (); ++j)
	{
	  xEps = argument;
	  xEps[j] += epsilon;
	  result_t resEps = adaptee (xEps);
	  gradient.insert (j) =
	    (resEps[idFunction] - res[idFunction]) / epsilon;
	}
    }

    template <typename T>
    void
    Simple<T>::computeGradient
    (const GenericFunction<T>& adaptee,
     value_type epsilon,
     gradient_t& gradient,
     const argument_t& argument,
     size_type idFunction,
     argument_t& xEps) const throw ()
    {
      assert (adaptee.outputSize () - idFunction > 0);

      result_t res = adaptee (argument);
      for (size_type j = 0; j < adaptee.inputSize (); ++j)
	{
	  xEps = argument;
	  xEps[j] += epsilon;
	  typename GenericFunction<T>::result_t resEps = adaptee (xEps);
	  gradient (j) = (resEps[idFunction] - res[idFunction]) / epsilon;
	}
    }

    template <>
    inline void
    FivePointsRule<EigenMatrixSparse>::computeGradient
    (const GenericFunction<EigenMatrixSparse>& adaptee,
     value_type epsilon,
     gradient_t& gradient,
     const argument_t& argument,
     size_type idFunction,
     argument_t& xEps) const throw ()
    {
      assert (adaptee.outputSize () - idFunction > 0);

      value_type h = epsilon / 2.;
      value_type r_0 = 0.;
      value_type round = 0.;
      value_type trunc = 0.;
      value_type error = 0.;

      for (size_type j = 0; j < argument.size (); ++j)
	{
	  detail::compute_deriv (adaptee, j, h,
				 r_0, round, trunc,
				 argument, idFunction, xEps);
	  error = round + trunc;

	  if (round < trunc && (round > 0 && trunc > 0))
	    {
	      value_type r_opt = 0., round_opt = 0., trunc_opt = 0.,
		error_opt = 0.;

	      /* Compute an optimised stepsize to minimize the total error,
		 using the scaling of the truncation error (O(h^2)) and
		 rounding error (O(1/h)). */

	      value_type h_opt =
		h * std::pow (round / (2. * trunc), 1. / 3.);

	      detail::compute_deriv (adaptee, j, h_opt,
				     r_opt, round_opt, trunc_opt,
				     argument, idFunction,
				     xEps);
	      error_opt = round_opt + trunc_opt;

	      /* Check that the new error is smaller, and that the new
		 derivative is consistent with the error bounds of the
		 original estimate. */

	      if (error_opt < error && std::fabs (r_opt - r_0) < 4. * error)
		{
		  r_0 = r_opt;
		  error = error_opt;
		}
	    }

	  gradient.insert (j) = r_0;
	}
    }

    template <typename T>
    void
    FivePointsRule<T>::computeGradient
    (const GenericFunction<T>& adaptee,
     value_type epsilon,
     gradient_t& gradient,
     const argument_t& argument,
     size_type idFunction,
     argument_t& xEps) const throw ()
    {
      assert (adaptee.outputSize () - idFunction > 0);

      value_type h = epsilon / 2.;
      value_type r_0 = 0.;
      value_type round = 0.;
      value_type trunc = 0.;
      value_type error = 0.;

      for (size_type j = 0; j < argument.size (); ++j)
	{
	  detail::compute_deriv (adaptee, j, h,
				 r_0, round, trunc,
				 argument, idFunction, xEps);
	  error = round + trunc;

	  if (round < trunc && (round > 0 && trunc > 0))
	    {
	      value_type r_opt = 0., round_opt = 0., trunc_opt = 0.,
		error_opt = 0.;

	      /* Compute an optimised stepsize to minimize the total error,
		 using the scaling of the truncation error (O(h^2)) and
		 rounding error (O(1/h)). */

	      value_type h_opt =
		h * std::pow (round / (2. * trunc), 1. / 3.);

	      detail::compute_deriv (adaptee, j, h_opt,
				     r_opt, round_opt, trunc_opt,
				     argument, idFunction,
				     xEps);
	      error_opt = round_opt + trunc_opt;

	      /* Check that the new error is smaller, and that the new
		 derivative is consistent with the error bounds of the
		 original estimate. */

	      if (error_opt < error && std::fabs (r_opt - r_0) < 4. * error)
		{
		  r_0 = r_opt;
		  error = error_opt;
		}
	    }

	  gradient[j] = r_0;
	}
    }
  } // end of namespace finiteDifferenceGradientPolicies.

} // end of namespace roboptim

#endif //! ROBOPTIM_CORE_FINITE_DIFFERENCE_GRADIENT_HXX