This file is indexed.

/usr/share/doc/libplplot12/examples/lua/x22.lua is in libplplot-dev 5.10.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
--[[ $Id: x22.lua 12769 2013-11-27 15:37:50Z andrewross $

	Simple vector plot example

  Copyright (C) 2008  Werner Smekal

  This file is part of PLplot.

  PLplot is free software you can redistribute it and/or modify
  it under the terms of the GNU Library General Public License as published
  by the Free Software Foundation either version 2 of the License, or
  (at your option) any later version.

  PLplot is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU Library General Public License for more details.

  You should have received a copy of the GNU Library General Public License
  along with PLplot if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]

-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")

-- Pairs of points making the line segments used to plot the user defined arrow 
arrow_x  = { -0.5, 0.5, 0.3, 0.5,  0.3, 0.5 }
arrow_y  = {    0,   0, 0.2,   0, -0.2,   0 }
arrow2_x = { -0.5, 0.3, 0.3, 0.5,  0.3, 0.3 }
arrow2_y = {    0,   0, 0.2,   0, -0.2,   0 }


-- Vector plot of the circulation about the origin
function circulation()
	nx = 20
	ny = 20
	dx = 1
	dy = 1

	xmin = -nx/2*dx
	xmax = nx/2*dx
	ymin = -ny/2*dy
	ymax = ny/2*dy

	cgrid2 = {}
	cgrid2["xg"] = {}
	cgrid2["yg"] = {}
	cgrid2["nx"] = nx
	cgrid2["ny"] = ny
	u = {}
	v = {}
	
	-- Create data - circulation around the origin. 
	for i = 1, nx do	
		x = (i-1-nx/2+0.5)*dx
		cgrid2["xg"][i] = {}
		cgrid2["yg"][i] = {}
		u[i] = {}
		v[i] = {}
		for j=1, ny do
			y = (j-1-ny/2+0.5)*dy
			cgrid2["xg"][i][j] = x
			cgrid2["yg"][i][j] = y
			u[i][j] = y
			v[i][j] = -x
		end
	end

	-- Plot vectors with default arrows 
	pl.env(xmin, xmax, ymin, ymax, 0, 0)
	pl.lab("(x)", "(y)", "#frPLplot Example 22 - circulation")
	pl.col0(2)
	pl.vect(u, v, 0, "pltr2", cgrid2 )
	pl.col0(1)
end


-- Vector plot of flow through a constricted pipe
function constriction( astyle )
	nx = 20
	ny = 20
	dx = 1
	dy = 1

	xmin = -nx/2*dx
	xmax = nx/2*dx
	ymin = -ny/2*dy
	ymax = ny/2*dy

  cgrid2 = {}
	cgrid2["xg"] = {}
	cgrid2["yg"] = {}
	cgrid2["nx"] = nx
	cgrid2["ny"] = ny
	u = {}
	v = {}
	
	Q = 2
	for i = 1, nx do	
		x = (i-1-nx/2+0.5)*dx
		cgrid2["xg"][i] = {}
		cgrid2["yg"][i] = {}
		u[i] = {}
		v[i] = {}
		for j = 1, ny do
			y = (j-1-ny/2+0.5)*dy
	    cgrid2["xg"][i][j] = x
	    cgrid2["yg"][i][j] = y
	    b = ymax/4*(3-math.cos(math.pi*x/xmax))
			if math.abs(y)<b then
				dbdx = ymax/4*math.sin(math.pi*x/xmax)*math.pi/xmax*y/b
				u[i][j] = Q*ymax/b
				v[i][j] = dbdx*u[i][j]
			else
				u[i][j] = 0
				v[i][j] = 0
			end
		end
	end

	pl.env(xmin, xmax, ymin, ymax, 0, 0)
	title = string.format( "#frPLplot Example 22 - constriction (arrow style %d)", astyle )
	pl.lab("(x)", "(y)", title)
	pl.col0(2)
	pl.vect(u, v, -1.0, "pltr2", cgrid2)
	pl.col0(1)
end

-- Note this function uses the global variable xmax rather than passing 
-- data as in C.
function transform(x,y)
	 
	xt = x
	yt = y / 4.0 * ( 3 - math.cos( math.pi * x / xmax ))

	return xt, yt
end

-- Vector plot of flow through a constricted pipe
function constriction2()
	nx = 20
	ny = 20
	nc = 11
	nseg = 20

	dx = 1
	dy = 1

	xmin = -nx/2*dx
	xmax = nx/2*dx
	ymin = -ny/2*dy
	ymax = ny/2*dy

	pl.stransform( "transform" )

	cgrid2 = {}
	cgrid2["xg"] = {}
	cgrid2["yg"] = {}
	cgrid2["nx"] = nx
	cgrid2["ny"] = ny
	u = {}
	v = {}
	
	Q = 2
	for i = 1, nx do	
		x = (i-1-nx/2+0.5)*dx
		cgrid2["xg"][i] = {}
		cgrid2["yg"][i] = {}
		u[i] = {}
		v[i] = {}
		for j = 1, ny do
			y = (j-1-ny/2+0.5)*dy
			cgrid2["xg"][i][j] = x
			cgrid2["yg"][i][j] = y
			b = ymax/4*(3-math.cos(math.pi*x/xmax))
			u[i][j] = Q*ymax/b
			v[i][j] = 0.0
		end
	end

	clev = {}
	for i = 1, nc do
	    clev[i] = Q + (i-1)*Q/(nc-1)
	end 

	pl.env(xmin, xmax, ymin, ymax, 0, 0)
	pl.lab("(x)", "(y)", "#frPLplot Example 22 - constriction with plstransform")
	pl.col0(2)
	pl.shades(u, xmin+dx/2, xmax-dx/2, ymin+dy/2, ymax-dy/2, clev, 0.0, 1, 1.0, 0 );
	pl.vect(u, v, -1.0, "pltr2", cgrid2)
	pl.path( nseg, xmin, ymax, xmax, ymax );
	pl.path( nseg, xmin, ymin, xmax, ymin );
	pl.col0(1)

	pl.stransform()

end


function f2mnmx(f, nx, ny)
	fmax = f[1][1]
	fmin = fmax

	for i=1, nx do
		for j=1, ny do
	    fmax = math.max(fmax, f[i][j])
	    fmin = math.min(fmin, f[i][j])
		end
	end
		
	return fmin, fmax
end

-- Vector plot of the gradient of a shielded potential (see example 9)
function potential()
  nper = 100
  nlevel = 10
  nr = 20
  ntheta = 20

  u = {}
  v = {}
  z = {}
  clevel = {}
  px = {}
  py = {}

  cgrid2 = {}
  cgrid2["xg"] = {}
  cgrid2["yg"] = {}
  cgrid2["nx"] = nr
  cgrid2["ny"] = ntheta

  -- Potential inside a conducting cylinder (or sphere) by method of images.
  -- Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
  -- Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
  -- Also put in smoothing term at small distances.
  rmax = nr

  eps = 2

  q1 = 1
  d1 = rmax/4

  q1i = -q1*rmax/d1
  d1i = rmax^2/d1

  q2 = -1
  d2 = rmax/4

  q2i = -q2*rmax/d2
  d2i = rmax^2/d2

  for i = 1, nr do
	  r = i - 0.5
    cgrid2["xg"][i] = {}
    cgrid2["yg"][i] = {}
    u[i] = {}
    v[i] = {}
    z[i] = {}
	  for j = 1, ntheta do
	    theta = 2*math.pi/(ntheta-1)*(j-0.5)
	    x = r*math.cos(theta)
	    y = r*math.sin(theta)
	    cgrid2["xg"][i][j] = x
	    cgrid2["yg"][i][j] = y
	    div1 = math.sqrt((x-d1)^2 + (y-d1)^2 + eps^2)
	    div1i = math.sqrt((x-d1i)^2 + (y-d1i)^2 + eps^2)
	    div2 = math.sqrt((x-d2)^2 + (y+d2)^2 + eps^2)
	    div2i = math.sqrt((x-d2i)^2 + (y+d2i)^2 + eps^2)
	    z[i][j] = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
	    u[i][j] = -q1*(x-d1)/div1^3 - q1i*(x-d1i)/div1i^3
		            -q2*(x-d2)/div2^3 - q2i*(x-d2i)/div2i^3
	    v[i][j] = -q1*(y-d1)/div1^3 - q1i*(y-d1i)/div1i^3
		            -q2*(y+d2)/div2^3 - q2i*(y+d2i)/div2i^3
	  end
  end

  xmin, xmax = f2mnmx(cgrid2["xg"], nr, ntheta)
  ymin, ymax = f2mnmx(cgrid2["yg"], nr, ntheta)
  zmin, zmax = f2mnmx(z, nr, ntheta)

  pl.env(xmin, xmax, ymin, ymax, 0, 0)
  pl.lab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot")

  -- Plot contours of the potential 
  dz = (zmax-zmin)/nlevel
  for i = 1, nlevel do
  	clevel[i] = zmin + (i-0.5)*dz
  end
  
  pl.col0(3)
  pl.lsty(2)
  pl.cont(z, 1, nr, 1, ntheta, clevel, "pltr2", cgrid2)
  pl.lsty(1)
  pl.col0(1)

  -- Plot the vectors of the gradient of the potential 
  pl.col0(2)
  pl.vect(u, v, 25, "pltr2", cgrid2)
  pl.col0(1)

  -- Plot the perimeter of the cylinder 
  for i=1, nper do
    theta = 2*math.pi/(nper-1)*(i-1)
    px[i] = rmax*math.cos(theta)
    py[i] = rmax*math.sin(theta)
  end
  
  pl.line(px, py)
end


----------------------------------------------------------------------------
-- main
--
-- Generates several simple vector plots.
----------------------------------------------------------------------------

-- Parse and process command line arguments 
pl.parseopts(arg, pl.PL_PARSE_FULL)

-- Initialize plplot 
pl.init()

circulation()

fill = 0

-- Set arrow style using arrow_x and arrow_y then
-- plot using these arrows.
pl.svect(arrow_x, arrow_y, fill)
constriction(1)

-- Set arrow style using arrow2_x and arrow2_y then
-- plot using these filled arrows. 
fill = 1
pl.svect(arrow2_x, arrow2_y, fill)
constriction(2)

constriction2()

pl.svect(nil, nil, 0)

potential()

pl.plend()