This file is indexed.

/usr/share/doc/libplplot12/examples/lua/x21.lua is in libplplot-dev 5.10.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
--[[ $Id: x21.lua 12331 2013-05-03 02:41:21Z airwin $
	Grid data demo

   Copyright (C) 200  Werner Smekal

   This file is part of PLplot.

   PLplot is free software you can redistribute it and/or modify
   it under the terms of the GNU Library General Public License as published
   by the Free Software Foundation either version 2 of the License, or
   (at your option) any later version.

   PLplot is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU Library General Public License for more details.

   You should have received a copy of the GNU Library General Public License
   along with PLplot if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]


-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")

-- bitwise or operator from http://lua-users.org/wiki/BaseSixtyFour
-- (c) 2006-2008 by Alex Kloss
-- licensed under the terms of the LGPL2

-- return single bit (for OR)
function bit(x,b)
  return ((x % 2^b) - (x % 2^(b-1)) > 0)
end

-- logic OR for number values
function lor(x,y)
	result = 0
	for p=1,8 do result = result + (((bit(x,p) or bit(y,p)) == true) and 2^(p-1) or 0) end
	return result
end

-- Options data structure definition. 
pts = 500
xp = 25
yp = 20
nl = 16
knn_order = 20
threshold = 1.001
wmin = -1e3
randn = 0
rosen = 0


function cmap1_init()
  i = { 0, 1 } -- left and right boundary 

  h = { 240, 0 } -- blue -> green -> yellow -> red 
  l = { 0.6, 0.6 }
  s = { 0.8, 0.8 }

  pl.scmap1n(256)
  pl.scmap1l(0, i, h, l, s)
end


function create_grid(px,  py)
  local x = {}
  local y = {}

  for i = 1, px do
    x[i] = xm + (xM-xm)*(i-1)/(px-1)
  end

  for i = 1, py do
    y[i] = ym + (yM-ym)*(i-1)/(py-1)
  end
  
  return x, y
end


function create_data(pts)
  local x = {}
  local y = {}
  local z = {}

  for i = 1, pts do
    xt = (xM-xm)*pl.randd()
    yt = (yM-ym)*pl.randd()
    if randn==0 then
      x[i] = xt + xm
      y[i] = yt + ym
    else  -- std=1, meaning that many points are outside the plot range 
      x[i] = math.sqrt(-2*math.log(xt)) * math.cos(2*math.pi*yt) + xm
      y[i] = math.sqrt(-2*math.log(xt)) * math.sin(2*math.pi*yt) + ym
    end
    if rosen==0 then
      r = math.sqrt(x[i]^2 + y[i]^2)
      z[i] = math.exp(-r^2) * math.cos(2*math.pi*r)
    else 
      z[i] = math.log((1-x[i])^2 + 100*(y[i] - x[i]^2)^2)
    end
  end
  
  return x, y, z
end


title = { "Cubic Spline Approximation",
          "Delaunay Linear Interpolation",
          "Natural Neighbors Interpolation",
          "KNN Inv. Distance Weighted",
          "3NN Linear Interpolation",
          "4NN Around Inv. Dist. Weighted" }



xm = -0.2
ym = -0.2
xM = 0.6
yM = 0.6

pl.parseopts(arg, pl.PL_PARSE_FULL)

opt = { 0, 0, wmin, knn_order, threshold, 0 }

-- Initialize plplot 
pl.init()

cmap1_init()

-- Initialise random number generator 
pl.seed(5489)

x, y, z =  create_data(pts) -- the sampled data 
zmin = z[1]
zmax = z[1]
for i=2, pts do
  if z[i]>zmax then zmax = z[i] end
  if z[i]<zmin then zmin = z[i] end
end

xg, yg = create_grid(xp, yp) -- grid the data at 
clev = {}
xx = {}
yy = {}

pl.col0(1)
pl.env(xm, xM, ym, yM, 2, 0)
pl.col0(15)
pl.lab("X", "Y", "The original data sampling")
for i=1, pts do
  pl.col1( (z[i]-zmin)/(zmax-zmin) )
  xx[1] = x[i]
  yy[1] = y[i]
  pl.string( xx, yy, "#(727)" )
end
pl.adv(0)

pl.ssub(3, 2)

for k = 1, 2 do
  pl.adv(0)
  for alg=1, 6 do
    zg = pl.griddata(x, y, z, xg, yg, alg, opt[alg])

    --[[
       - CSA can generate NaNs (only interpolates?!).
       - DTLI and NNI can generate NaNs for points outside the convex hull
         of the data points.
       - NNLI can generate NaNs if a sufficiently thick triangle is not found
     
       PLplot should be NaN/Inf aware, but changing it now is quite a job...
       so, instead of not plotting the NaN regions, a weighted average over
       the neighbors is done. --]]
     

    if alg==pl.GRID_CSA or alg==pl.GRID_DTLI or alg==pl.GRID_NNLI or alg==pl.GRID_NNI then
      for i = 1, xp do
        for j = 1, yp do
          if zg[i][j]~=zg[i][j] then -- average (IDW) over the 8 neighbors 
            zg[i][j] = 0
            dist = 0

            for ii=i-1, i+1 do
              if ii<=xp then
                for jj=j-1, j+1 do
                  if jj<=yp then
                    if ii>=1 and jj>=1 and zg[ii][jj]==zg[ii][jj] then
                      if (math.abs(ii-i) + math.abs(jj-j)) == 1 then 
                        d = 1
                      else
                        d = 1.4142
                      end
                      zg[i][j] = zg[i][j] + zg[ii][jj]/(d^2)
                      dist = dist + d
                    end
                  end
                end
              end
            end
            if dist~=0 then
              zg[i][j] = zg[i][j]/dist
            else
              zg[i][j] = zmin
            end
          end
        end
      end
    end

    lzM, lzm = pl.MinMax2dGrid(zg)

    if lzm~=lzm then lzm=zmin else lzm = math.min(lzm, zmin) end
    if lzM~=lzM then lzM=zmax else lzM = math.max(lzM, zmax) end
    
    -- Increase limits slightly to prevent spurious contours 
    -- due to rounding errors 
    lzm = lzm-0.01
    lzM = lzM+0.01

    pl.col0(1)

    pl.adv(alg)

    if k==1 then
      for i = 1, nl do
        clev[i] = lzm + (lzM-lzm)/(nl-1)*(i-1)
      end

      pl.env0(xm, xM, ym, yM, 2, 0)
      pl.col0(15)
      pl.lab("X", "Y", title[alg])
      pl.shades(zg, xm, xM, ym, yM, clev, 1., 0, 1., 1)
      pl.col0(2)
    else 
      for i = 1, nl do
        clev[i] = lzm + (lzM-lzm)/(nl-1)*(i-1)
      end

      pl.vpor(0, 1, 0, 0.9)
      pl.wind(-1.1, 0.75, -0.65, 1.20)
      
      -- For the comparison to be fair, all plots should have the
      -- same z values, but to get the max/min of the data generated
      -- by all algorithms would imply two passes. Keep it simple.
      -- 
      -- pl.w3d(1, 1, 1, xm, xM, ym, yM, zmin, zmax, 30, -60)
       

      pl.w3d(1, 1, 1, xm, xM, ym, yM, lzm, lzM, 30, -40)
      pl.box3("bntu", "X", 0, 0,
              "bntu", "Y", 0, 0,
              "bcdfntu", "Z", 0.5, 0)
      pl.col0(15)
      pl.lab("", "", title[alg])
      pl.plot3dc(xg, yg, zg, lor(lor(pl.DRAW_LINEXY, pl.MAG_COLOR), pl.BASE_CONT), clev)
    end
  end
end

pl.plend()