This file is indexed.

/usr/share/doc/libplplot12/examples/d/x22d.d is in libplplot-dev 5.10.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// $Id: x22d.d 12832 2013-12-09 14:39:59Z andrewross $
//
//  Simple vector plot example
//  Copyright (C) 2009  Werner Smekal
//
//
//  This file is part of PLplot.
//
//  PLplot is free software; you can redistribute it and/or modify
//  it under the terms of the GNU Library General Public License as published
//  by the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  PLplot is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU Library General Public License for more details.
//
//  You should have received a copy of the GNU Library General Public License
//  along with PLplot; if not, write to the Free Software
//  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
//

import std.math;
import std.string;

import plplot;

//
// Global transform function for a constriction using data passed in
// This is the same transformation used in constriction.
//
extern ( C ) {
void
transform( PLFLT x, PLFLT y, PLFLT *xt, PLFLT *yt, PLPointer data )
{
    PLFLT *xmax = cast(PLFLT *) data;

    *xt = x;
    *yt = y / 4.0 * ( 3 - cos( PI * x / *xmax ) );
}
}


//--------------------------------------------------------------------------
// main
//
// Generates several simple vector plots.
//--------------------------------------------------------------------------


class plot {
    //
    // Vector plot of the circulation about the origin
    //
    void circulation()
    {
        const int nx = 20;
        const int ny = 20;

        PLFLT     dx = 1.0;
        PLFLT     dy = 1.0;

        PLFLT     xmin = -nx / 2 * dx;
        PLFLT     xmax = nx / 2 * dx;
        PLFLT     ymin = -ny / 2 * dy;
        PLFLT     ymax = ny / 2 * dy;

        PLcGrid2  cgrid2;
        cgrid2.xg = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            cgrid2.xg[i] = new PLFLT[ny];
        cgrid2.yg = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            cgrid2.yg[i] = new PLFLT[ny];

        PLFLT[][] u = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            u[i] = new PLFLT[ny];
        PLFLT[][] v = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            v[i] = new PLFLT[ny];

        // Create data - circulation around the origin.
        PLFLT x, y;
        for ( int i = 0; i < nx; i++ )
        {
            x = ( i - nx / 2 + 0.5 ) * dx;
            for ( int j = 0; j < ny; j++ )
            {
                y = ( j - ny / 2 + 0.5 ) * dy;
                cgrid2.xg[i][j] = x;
                cgrid2.yg[i][j] = y;
                u[i][j]         = y;
                v[i][j]         = -x;
            }
        }

        // Plot vectors with default arrows
        plenv( xmin, xmax, ymin, ymax, 0, 0 );
        pllab( "(x)", "(y)", "#frPLplot Example 22 - circulation" );
        plcol0( 2 );
        plvect( u, v, 0.0, cgrid2 );
        plcol0( 1 );
    }

    //
    // Vector plot of flow through a constricted pipe
    //
    void
    constriction( int astyle )
    {
        const int nx = 20;
        const int ny = 20;
        string    title;

        PLFLT     dx = 1.0;
        PLFLT     dy = 1.0;

        PLFLT     xmin = -nx / 2 * dx;
        PLFLT     xmax = nx / 2 * dx;
        PLFLT     ymin = -ny / 2 * dy;
        PLFLT     ymax = ny / 2 * dy;

        PLcGrid2  cgrid2;
        cgrid2.xg = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            cgrid2.xg[i] = new PLFLT[ny];
        cgrid2.yg = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            cgrid2.yg[i] = new PLFLT[ny];

        PLFLT[][] u = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            u[i] = new PLFLT[ny];
        PLFLT[][] v = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            v[i] = new PLFLT[ny];

        PLFLT Q = 2.0;
        PLFLT x, y, b, dbdx;
        for ( int i = 0; i < nx; i++ )
        {
            x = ( i - nx / 2 + 0.5 ) * dx;
            for ( int j = 0; j < ny; j++ )
            {
                y = ( j - ny / 2 + 0.5 ) * dy;
                cgrid2.xg[i][j] = x;
                cgrid2.yg[i][j] = y;
                b = ymax / 4.0 * ( 3 - cos( PI * x / xmax ) );
                if ( fabs( y ) < b )
                {
                    dbdx    = ymax / 4.0 * sin( PI * x / xmax ) * PI / xmax * y / b;
                    u[i][j] = Q * ymax / b;
                    v[i][j] = dbdx * u[i][j];
                }
                else
                {
                    u[i][j] = 0.0;
                    v[i][j] = 0.0;
                }
            }
        }

        plenv( xmin, xmax, ymin, ymax, 0, 0 );
        title = format( "#frPLplot Example 22 - constriction (arrow style %d)", astyle );
        pllab( "(x)", "(y)", title );
        plcol0( 2 );
        plvect( u, v, -1.0, cgrid2 );
        plcol0( 1 );
    }


    //
    // Vector plot of flow through a constricted pipe
    // with a coordinate transform
    //
    void
    constriction2()
    {
        const int nx   = 20;
        const int ny   = 20;
        const int nc   = 11;
        const int nseg = 20;

        PLFLT []  clev = new PLFLT[nc];

        PLFLT     dx = 1.0;
        PLFLT     dy = 1.0;

        PLFLT     xmin = -nx / 2 * dx;
        PLFLT     xmax = nx / 2 * dx;
        PLFLT     ymin = -ny / 2 * dy;
        PLFLT     ymax = ny / 2 * dy;

        plstransform( &transform, cast(PLPointer) &xmax );

        PLcGrid2 cgrid2;
        cgrid2.xg = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            cgrid2.xg[i] = new PLFLT[ny];
        cgrid2.yg = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            cgrid2.yg[i] = new PLFLT[ny];

        PLFLT[][] u = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            u[i] = new PLFLT[ny];
        PLFLT[][] v = new PLFLT[][nx];
        for ( int i = 0; i < nx; i++ )
            v[i] = new PLFLT[ny];

        PLFLT Q = 2.0;
        PLFLT x, y, b, dbdx;
        for ( int i = 0; i < nx; i++ )
        {
            x = ( i - nx / 2 + 0.5 ) * dx;
            for ( int j = 0; j < ny; j++ )
            {
                y = ( j - ny / 2 + 0.5 ) * dy;
                cgrid2.xg[i][j] = x;
                cgrid2.yg[i][j] = y;
                b       = ymax / 4.0 * ( 3 - cos( PI * x / xmax ) );
                u[i][j] = Q * ymax / b;
                v[i][j] = 0.0;
            }
        }

        for ( int i = 0; i < nc; i++ )
        {
            clev[i] = Q + i * Q / ( nc - 1 );
        }

        plenv( xmin, xmax, ymin, ymax, 0, 0 );
        pllab( "(x)", "(y)", "#frPLplot Example 22 - constriction with plstransform" );
        plcol0( 2 );
        plshades( u, null, xmin + dx / 2, xmax - dx / 2,
            ymin + dy / 2, ymax - dy / 2,
            clev, 0.0, 1, 1.0, 0 );
        plvect( u, v, -1.0, cgrid2 );
        // Plot edges using plpath (which accounts for coordinate transformation) rather than plline
        plpath( nseg, xmin, ymax, xmax, ymax );
        plpath( nseg, xmin, ymin, xmax, ymin );
        plcol0( 1 );

        plstransform( null, null );
    }

    //--------------------------------------------------------------------------
    // f2mnmx
    //
    // Returns min & max of input 2d array.
//--------------------------------------------------------------------------
    void f2mnmx( PLFLT[][] f, out PLFLT fmn, out PLFLT fmx )
    {
        fmx = f[0][0];
        fmn = fmx;

        for ( int i = 0; i < f.length; i++ )
        {
            for ( int j = 0; j < f[i].length; j++ )
            {
                fmx = fmax( fmx, f[i][j] );
                fmn = fmin( fmn, f[i][j] );
            }
        }
    }


    //
    // Vector plot of the gradient of a shielded potential (see example 9)
    //
    void potential()
    {
        const int nper   = 100;
        const int nlevel = 10;
        const int nr     = 20;
        const int ntheta = 20;

        PLcGrid2  cgrid2;
        cgrid2.xg = new PLFLT[][nr];
        for ( int i = 0; i < nr; i++ )
            cgrid2.xg[i] = new PLFLT[ntheta];
        cgrid2.yg = new PLFLT[][nr];
        for ( int i = 0; i < nr; i++ )
            cgrid2.yg[i] = new PLFLT[ntheta];

        PLFLT[][] u = new PLFLT[][nr];
        for ( int i = 0; i < nr; i++ )
            u[i] = new PLFLT[ntheta];
        PLFLT[][] v = new PLFLT[][nr];
        for ( int i = 0; i < nr; i++ )
            v[i] = new PLFLT[ntheta];
        PLFLT[][] z = new PLFLT[][nr];
        for ( int i = 0; i < nr; i++ )
            z[i] = new PLFLT[ntheta];

        // Potential inside a conducting cylinder (or sphere) by method of images.
        // Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
        // Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
        // Also put in smoothing term at small distances.
        //

        PLFLT rmax = nr;

        PLFLT eps = 2.0;

        PLFLT q1 = 1.0;
        PLFLT d1 = rmax / 4.0;

        PLFLT q1i = -q1 * rmax / d1;
        PLFLT d1i = pow( rmax, 2.0 ) / d1;

        PLFLT q2 = -1.0;
        PLFLT d2 = rmax / 4.0;

        PLFLT q2i = -q2 * rmax / d2;
        PLFLT d2i = pow( rmax, 2.0 ) / d2;

        PLFLT r, theta, x, y;
        PLFLT div1, div1i, div2, div2i;
        for ( int i = 0; i < nr; i++ )
        {
            r = 0.5 + i;
            for ( int j = 0; j < ntheta; j++ )
            {
                theta           = 2.0 * PI / ( ntheta - 1 ) * ( 0.5 + j );
                x               = r * cos( theta );
                y               = r * sin( theta );
                cgrid2.xg[i][j] = x;
                cgrid2.yg[i][j] = y;
                div1            = sqrt( pow( x - d1, 2.0 ) + pow( y - d1, 2.0 ) + pow( eps, 2.0 ) );
                div1i           = sqrt( pow( x - d1i, 2.0 ) + pow( y - d1i, 2.0 ) + pow( eps, 2.0 ) );
                div2            = sqrt( pow( x - d2, 2.0 ) + pow( y + d2, 2.0 ) + pow( eps, 2.0 ) );
                div2i           = sqrt( pow( x - d2i, 2.0 ) + pow( y + d2i, 2.0 ) + pow( eps, 2.0 ) );
                z[i][j]         = q1 / div1 + q1i / div1i + q2 / div2 + q2i / div2i;
                u[i][j]         = -q1 * ( x - d1 ) / pow( div1, 3.0 ) - q1i * ( x - d1i ) / pow( div1i, 3.0 )
                                  - q2 * ( x - d2 ) / pow( div2, 3.0 ) - q2i * ( x - d2i ) / pow( div2i, 3.0 );
                v[i][j] = -q1 * ( y - d1 ) / pow( div1, 3.0 ) - q1i * ( y - d1i ) / pow( div1i, 3.0 )
                          - q2 * ( y + d2 ) / pow( div2, 3.0 ) - q2i * ( y + d2i ) / pow( div2i, 3.0 );
            }
        }

        PLFLT xmin, xmax, ymin, ymax, zmin, zmax;
        f2mnmx( cgrid2.xg, xmin, xmax );
        f2mnmx( cgrid2.yg, ymin, ymax );
        f2mnmx( z, zmin, zmax );

        plenv( xmin, xmax, ymin, ymax, 0, 0 );
        pllab( "(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot" );

        // Plot contours of the potential
        PLFLT   dz     = ( zmax - zmin ) / nlevel;
        PLFLT[] clevel = new PLFLT[nlevel];
        for ( int i = 0; i < nlevel; i++ )
            clevel[i] = zmin + ( i + 0.5 ) * dz;

        plcol0( 3 );
        pllsty( 2 );
        plcont( z, 1, nr, 1, ntheta, clevel, cgrid2 );
        pllsty( 1 );
        plcol0( 1 );

        // Plot the vectors of the gradient of the potential
        plcol0( 2 );
        plvect( u, v, 25.0, cgrid2 );
        plcol0( 1 );

        // Plot the perimeter of the cylinder
        PLFLT[] px = new PLFLT[nper];
        PLFLT[] py = new PLFLT[nper];
        for ( int i = 0; i < nper; i++ )
        {
            theta = ( 2.0 * PI / ( nper - 1 ) ) * i;
            px[i] = rmax * cos( theta );
            py[i] = rmax * sin( theta );
        }
        plline( px, py );
    }
}


int main( char[][] args )
{
    // Parse and process command line arguments
    plparseopts( args, PL_PARSE_FULL );

    // Initialize plplot
    plinit();

    plot myPlot = new plot;

    myPlot.circulation();

    PLINT fill = 0;

    // Pairs of points making the line segments used to plot the user defined arrow
    PLFLT[] arrow_x = [ -0.5, 0.5, 0.3, 0.5, 0.3, 0.5 ];
    PLFLT[] arrow_y = [  0.0, 0.0, 0.2, 0.0, -0.2, 0.0 ];

    // Set arrow style using arrow_x and arrow_y then
    //       plot using these arrows.
    plsvect( arrow_x, arrow_y, fill );
    myPlot.constriction( 1 );

    // Pairs of points making the line segments used to plot the user defined arrow
    PLFLT[] arrow2_x = [ -0.5, 0.3, 0.3, 0.5, 0.3, 0.3 ];
    PLFLT[] arrow2_y = [  0.0, 0.0, 0.2, 0.0, -0.2, 0.0 ];

    // Set arrow style using arrow2_x and arrow2_y then
    //       plot using these filled arrows.
    fill = 1;
    plsvect( arrow2_x, arrow2_y, fill );
    myPlot.constriction( 2 );

    myPlot.constriction2();

    plsvect( null, null, 0 );

    myPlot.potential();

    plend();

    return 0;
}