This file is indexed.

/usr/share/doc/libplplot12/examples/d/x21d.d is in libplplot-dev 5.10.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// $Id: x21d.d 12393 2013-06-27 19:49:07Z andrewross $
//      Grid data demo
//
// Copyright (C) 2009  Werner Smekal
//
// This file is part of PLplot.
//
// PLplot is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with PLplot; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
//

import std.math;

import plplot;

// Options data structure definition.
PLINT pts       = 500;
PLINT xp        = 25;
PLINT yp        = 20;
PLINT nl        = 16;
int   knn_order = 20;
PLFLT threshold = 1.001;
PLFLT wmin      = -1e3;
int   randn     = 0;
int   rosen     = 0;


PLFLT xm, xM, ym, yM;

int main( char[][] args )
{
    string[] title = [ "Cubic Spline Approximation",
                       "Delaunay Linear Interpolation",
                       "Natural Neighbors Interpolation",
                       "KNN Inv. Distance Weighted",
                       "3NN Linear Interpolation",
                       "4NN Around Inv. Dist. Weighted" ];

    xm = ym = -0.2;
    xM = yM = 0.6;

    // plMergeOpts(options, "x21c options", NULL);
    plparseopts( args, PL_PARSE_FULL );

    PLFLT[] opt = [ 0.0, 0.0, wmin, knn_order, threshold, 0.0 ];

    // Initialize plplot
    plinit();

    cmap1_init();

    // Initialise random number generator
    plseed( 5489 );

    PLFLT[] x, y, z;
    x.length = y.length = z.length = pts;
    create_data( x, y, z ); // the sampled data
    PLFLT zmin = z[0];
    PLFLT zmax = z[0];
    for ( int i = 1; i < pts; i++ )
    {
        if ( z[i] > zmax )
            zmax = z[i];
        if ( z[i] < zmin )
            zmin = z[i];
    }

    PLFLT[] xg, yg;
    xg.length = xp;
    yg.length = yp;
    create_grid( xg, yg ); // grid the data at

    PLFLT[][] zg = new PLFLT[][xp];
    for ( int i = 0; i < xp; i++ )
        zg[i] = new PLFLT[yp];

    PLFLT[] clev = new PLFLT[nl];

    PLFLT[] xx = new PLFLT[1];
    PLFLT[] yy = new PLFLT[1];

    plcol0( 1 );
    plenv( xm, xM, ym, yM, 2, 0 );
    plcol0( 15 );
    pllab( "X", "Y", "The original data sampling" );
    for ( int i = 0; i < pts; i++ )
    {
        plcol1( ( z[i] - zmin ) / ( zmax - zmin ) );
        xx[0] = x[i];
        yy[0] = y[i];
        plstring( xx, yy, "#(727)" );
    }
    pladv( 0 );

    plssub( 3, 2 );

    for ( int k = 0; k < 2; k++ )
    {
        pladv( 0 );
        for ( int alg = 1; alg < 7; alg++ )
        {
            plgriddata( x, y, z, xg, yg, zg, alg, opt[alg - 1] );

            // - CSA can generate NaNs (only interpolates?!).
            // - DTLI and NNI can generate NaNs for points outside the convex hull
            //      of the data points.
            // - NNLI can generate NaNs if a sufficiently thick triangle is not found
            //
            // PLplot should be NaN/Inf aware, but changing it now is quite a job...
            // so, instead of not plotting the NaN regions, a weighted average over
            // the neighbors is done.
            //

            if ( alg == GRID_CSA || alg == GRID_DTLI || alg == GRID_NNLI || alg == GRID_NNI )
            {
                PLFLT dist, d;

                for ( int i = 0; i < xp; i++ )
                {
                    for ( int j = 0; j < yp; j++ )
                    {
                        if ( isnan( zg[i][j] ) )                       // average (IDW) over the 8 neighbors
                        {
                            zg[i][j] = 0.0;
                            dist     = 0.0;

                            for ( int ii = i - 1; ii <= i + 1 && ii < xp; ii++ )
                            {
                                for ( int jj = j - 1; jj <= j + 1 && jj < yp; jj++ )
                                {
                                    if ( ii >= 0 && jj >= 0 && !isnan( zg[ii][jj] ) )
                                    {
                                        d         = ( abs( ii - i ) + abs( jj - j ) ) == 1 ? 1.0 : 1.4142;
                                        zg[i][j] += zg[ii][jj] / ( d * d );
                                        dist     += d;
                                    }
                                }
                            }
                            if ( dist != 0.0 )
                                zg[i][j] /= dist;
                            else
                                zg[i][j] = zmin;
                        }
                    }
                }
            }

            PLFLT lzM, lzm;
            plMinMax2dGrid( zg, lzM, lzm );

            lzm = fmin( lzm, zmin );
            lzM = fmax( lzM, zmax );

            // Increase limits slightly to prevent spurious contours
            // due to rounding errors
            lzm = lzm - 0.01;
            lzM = lzM + 0.01;

            plcol0( 1 );

            pladv( alg );

            if ( k == 0 )
            {
                for ( int i = 0; i < nl; i++ )
                    clev[i] = lzm + ( lzM - lzm ) / ( nl - 1 ) * i;

                plenv0( xm, xM, ym, yM, 2, 0 );
                plcol0( 15 );
                pllab( "X", "Y", title[alg - 1] );
                plshades( zg, null, xm, xM, ym, yM, clev, 1, 0, 1, 1 );
                plcol0( 2 );
            }
            else
            {
                for ( int i = 0; i < nl; i++ )
                    clev[i] = lzm + ( lzM - lzm ) / ( nl - 1 ) * i;

                plvpor( 0.0, 1.0, 0.0, 0.9 );
                plwind( -1.1, 0.75, -0.65, 1.20 );
                //
                // For the comparison to be fair, all plots should have the
                // same z values, but to get the max/min of the data generated
                // by all algorithms would imply two passes. Keep it simple.
                //
                // plw3d(1., 1., 1., xm, xM, ym, yM, zmin, zmax, 30, -60);
                //

                plw3d( 1., 1., 1., xm, xM, ym, yM, lzm, lzM, 30, -40 );
                plbox3( "bntu", "X", 0., 0,
                    "bntu", "Y", 0., 0,
                    "bcdfntu", "Z", 0.5, 0 );
                plcol0( 15 );
                pllab( "", "", title[alg - 1] );
                plot3dc( xg, yg, zg, DRAW_LINEXY | MAG_COLOR | BASE_CONT, clev );
            }
        }
    }

    plend();

    return 0;
}


void create_grid( PLFLT[] x, PLFLT[] y )
{
    int px = cast(int) x.length;
    int py = cast(int) y.length;

    for ( int i = 0; i < px; i++ )
        x[i] = xm + ( xM - xm ) * i / ( px - 1.0 );

    for ( int i = 0; i < py; i++ )
        y[i] = ym + ( yM - ym ) * i / ( py - 1.0 );
}


void create_data( PLFLT[] x, PLFLT[] y, PLFLT[] z )
{
    int pts = cast(int) x.length;
    assert( pts == y.length, "create_data(): Arrays must be of same length" );
    assert( pts == z.length, "create_data(): Arrays must be of same length" );

    PLFLT xt, yt, r;
    for ( int i = 0; i < pts; i++ )
    {
        xt = ( xM - xm ) * plrandd();
        yt = ( yM - ym ) * plrandd();
        if ( !randn )
        {
            x[i] = xt + xm;
            y[i] = yt + ym;
        }
        else // std=1, meaning that many points are outside the plot range
        {
            x[i] = sqrt( -2.0 * log( xt ) ) * cos( 2. * PI * yt ) + xm;
            y[i] = sqrt( -2.0 * log( xt ) ) * sin( 2. * PI * yt ) + ym;
        }
        if ( !rosen )
        {
            r    = sqrt( x[i] * x[i] + y[i] * y[i] );
            z[i] = exp( -r * r ) * cos( 2.0 * PI * r );
        }
        else
            z[i] = log( pow( 1. - x[i], 2.9 ) + 100.0 * pow( y[i] - pow( x[i], 2.0 ), 2.0 ) );
    }
}


void cmap1_init()
{
    PLFLT[] i = [ 0.0, 1.0 ];           // boundaries

    PLFLT[] h = [ 240.0, 0.0 ];         // blue -> green -> yellow -> red
    PLFLT[] l = [ 0.6, 0.6 ];
    PLFLT[] s = [ 0.8, 0.8 ];

    plscmap1n( 256 );
    plscmap1l( 0, i, h, l, s );
}