This file is indexed.

/usr/share/doc/libplplot12/examples/d/x19d.d is in libplplot-dev 5.10.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// $Id: x19d.d 12532 2013-09-26 15:18:37Z andrewross $
//
//      Illustrates backdrop plotting of world, US maps.
//      Contributed by Wesley Ebisuzaki.
//

import std.math;
import std.string;
import std.c.string;

import plplot;

extern ( C ) {
void
map_transform( PLFLT x, PLFLT y, PLFLT *xt, PLFLT *yt, PLPointer data )
{
    double radius;

    radius = 90.0 - y;
    *xt    = radius * cos( x * PI / 180.0 );
    *yt    = radius * sin( x * PI / 180.0 );
}

//--------------------------------------------------------------------------
// mapform19
//
// Defines specific coordinate transformation for example 19.
// Not to be confused with mapform in src/plmap.c.
// x[], y[] are the coordinates to be plotted.
//--------------------------------------------------------------------------
void mapform19( PLINT n, PLFLT* x, PLFLT* y )
{
    double xp, yp, radius;

    for ( int i = 0; i < n; i++ )
    {
        radius = 90.0 - y[i];
        xp     = radius * cos( x[i] * PI / 180.0 );
        yp     = radius * sin( x[i] * PI / 180.0 );
        x[i]   = xp;
        y[i]   = yp;
    }
}

// A custom axis labeling function for longitudes and latitudes.
void geolocation_labeler( PLINT axis, PLFLT value, char* label, PLINT length, PLPointer data )
{
    string direction_label;
    PLFLT  label_val;
    char   * mlabel;

    if ( axis == PL_Y_AXIS )
    {
        label_val = value;
        if ( label_val > 0.0 )
            direction_label = " N";
        else if ( label_val < 0.0 )
            direction_label = " S";
        else
            direction_label = "Eq";
    }
    else if ( axis == PL_X_AXIS )
    {
        label_val = normalize_longitude( value );
        if ( label_val > 0.0 )
            direction_label = " E";
        else if ( label_val < 0.0 )
            direction_label = " W";
        else
            direction_label = "";
    }

    if ( axis == PL_Y_AXIS && value == 0.0 )
        // A special case for the equator
        strcpy( label, toStringz( direction_label ) );
    else
        strcpy( label, toStringz( format( "%.0f%s", fabs( label_val ), direction_label ) ) );
}
}


// "Normalize" longitude values so that they always fall between -180.0 and
// 180.0
PLFLT normalize_longitude( PLFLT lon )
{
    if ( lon >= -180.0 && lon <= 180.0 )
        return ( lon );
    else
    {
        PLFLT times = floor( ( fabs( lon ) + 180.0 ) / 360.0 );
        if ( lon < 0.0 )
            return ( lon + 360.0 * times );
        else
            return ( lon - 360.0 * times );
    }
}


//--------------------------------------------------------------------------
// main
//
// Shows two views of the world map.
//--------------------------------------------------------------------------
int main( char[][] args )
{
    // Parse and process command line arguments
    plparseopts( args, PL_PARSE_FULL );

    // Longitude (x) and latitude (y)
    PLFLT miny = -70;
    PLFLT maxy = 80;

    plinit();

    // Cartesian plots
    // Most of world
    PLFLT minx = -170;
    PLFLT maxx = minx + 360;

    // Setup a custom latitude and longitude-based scaling function.
    plslabelfunc( &geolocation_labeler, null );

    plcol0( 1 );
    plenv( minx, maxx, miny, maxy, 1, 70 );
    plmap( null, "usaglobe", minx, maxx, miny, maxy );

    // The Americas
    minx = 190;
    maxx = 340;

    plcol0( 1 );
    plenv( minx, maxx, miny, maxy, 1, 70 );
    plmap( null, "usaglobe", minx, maxx, miny, maxy );

    // Clear the labeling function
    plslabelfunc( null, null );

    // Polar, Northern hemisphere
    minx = 0;
    maxx = 360;

    plenv( -75., 75., -75., 75., 1, -1 );
    plmap( &mapform19, "globe", minx, maxx, miny, maxy );

    pllsty( 2 );
    plmeridians( &mapform19, 10.0, 10.0, 0.0, 360.0, -10.0, 80.0 );

    // Polar, Northern hemisphere, this time with a PLplot-wide transform

    minx = 0;
    maxx = 360;

    plstransform( &map_transform, null );

    pllsty( 1 );
    plenv( -75., 75., -75., 75., 1, -1 );
    // No need to set the map transform here as the global transform will be
    // used.
    plmap( null, "globe", minx, maxx, miny, maxy );

    pllsty( 2 );
    plmeridians( null, 10.0, 10.0, 0.0, 360.0, -10.0, 80.0 );

    // Show Baltimore, MD on the map
    plcol0( 2 );
    plssym( 0.0, 2.0 );
    PLFLT x[1] = -76.6125;
    PLFLT y[1] = 39.2902778;
    plpoin( x, y, 18 );
    plssym( 0.0, 1.0 );
    plptex( -76.6125, 43.0, 0.0, 0.0, 0.0, "Baltimore, MD" );

    // For C, this is how the global transform is cleared
    plstransform( null, null );


    plend();
    return 0;
}