This file is indexed.

/usr/share/doc/libplplot12/examples/c/x21c.c is in libplplot-dev 5.10.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
// $Id: x21c.c 12324 2013-05-02 17:51:13Z airwin $
//      Grid data demo
//
// Copyright (C) 2004  Joao Cardoso
//
// This file is part of PLplot.
//
// PLplot is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with PLplot; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
//

#include "plcdemos.h"

// Options data structure definition.

static PLINT         pts       = 500;
static PLINT         xp        = 25;
static PLINT         yp        = 20;
static PLINT         nl        = 16;
static int           knn_order = 20;
static PLFLT         threshold = 1.001;
static PLFLT         wmin      = -1e3;
static int           randn     = 0;
static int           rosen     = 0;

static PLOptionTable options[] = {
    {
        "npts",
        NULL,
        NULL,
        &pts,
        PL_OPT_INT,
        "-npts points",
        "Specify number of random points to generate [500]"
    },
    {
        "randn",
        NULL,
        NULL,
        &randn,
        PL_OPT_BOOL,
        "-randn",
        "Normal instead of uniform sampling -- the effective \n\
\t\t\t  number of points will be smaller than the specified."
    },
    {
        "rosen",
        NULL,
        NULL,
        &rosen,
        PL_OPT_BOOL,
        "-rosen",
        "Generate points from the Rosenbrock function."
    },
    {
        "nx",
        NULL,
        NULL,
        &xp,
        PL_OPT_INT,
        "-nx points",
        "Specify grid x dimension [25]"
    },
    {
        "ny",
        NULL,
        NULL,
        &yp,
        PL_OPT_INT,
        "-ny points",
        "Specify grid y dimension [20]"
    },
    {
        "nlevel",
        NULL,
        NULL,
        &nl,
        PL_OPT_INT,
        "-nlevel ",
        "Specify number of contour levels [15]"
    },
    {
        "knn_order",
        NULL,
        NULL,
        &knn_order,
        PL_OPT_INT,
        "-knn_order order",
        "Specify the number of neighbors [20]"
    },
    {
        "threshold",
        NULL,
        NULL,
        &threshold,
        PL_OPT_FLOAT,
        "-threshold float",
        "Specify what a thin triangle is [1. < [1.001] < 2.]"
    },

    {
        NULL,                   // option
        NULL,                   // handler
        NULL,                   // client data
        NULL,                   // address of variable to set
        0,                      // mode flag
        NULL,                   // short syntax
        NULL
    }                           // long syntax
};

void create_data( PLFLT **xi, PLFLT **yi, PLFLT **zi, int npts );
void free_data( PLFLT *x, PLFLT *y, PLFLT *z );
void create_grid( PLFLT **xi, int px, PLFLT **yi, int py );
void free_grid( PLFLT *x, PLFLT *y );

static void
cmap1_init( void )
{
    PLFLT i[2], h[2], l[2], s[2];

    i[0] = 0.0;         // left boundary
    i[1] = 1.0;         // right boundary

    h[0] = 240;         // blue -> green -> yellow ->
    h[1] = 0;           // -> red

    l[0] = 0.6;
    l[1] = 0.6;

    s[0] = 0.8;
    s[1] = 0.8;

    plscmap1n( 256 );
    c_plscmap1l( 0, 2, i, h, l, s, NULL );
}

PLFLT xm, xM, ym, yM;

int
main( int argc, const char *argv[] )
{
    PLFLT      *x, *y, *z, *clev;
    PLFLT      *xg, *yg, **zg;
    PLFLT      zmin, zmax, lzm, lzM;
    int        i, j, k;
    PLINT      alg;
    const char *title[] = { "Cubic Spline Approximation",
                            "Delaunay Linear Interpolation",
                            "Natural Neighbors Interpolation",
                            "KNN Inv. Distance Weighted",
                            "3NN Linear Interpolation",
                            "4NN Around Inv. Dist. Weighted" };

    PLFLT      opt[] = { 0., 0., 0., 0., 0., 0. };

    xm = ym = -0.2;
    xM = yM = 0.6;

    plMergeOpts( options, "x21c options", NULL );
    plparseopts( &argc, argv, PL_PARSE_FULL );

    opt[2] = wmin;
    opt[3] = (PLFLT) knn_order;
    opt[4] = threshold;

    // Initialize plplot

    plinit();

    // Use a colour map with no black band in the middle.
    cmap1_init();
    // Initialise random number generator
    plseed( 5489 );

    create_data( &x, &y, &z, pts ); // the sampled data
    zmin = z[0];
    zmax = z[0];
    for ( i = 1; i < pts; i++ )
    {
        if ( z[i] > zmax )
            zmax = z[i];
        if ( z[i] < zmin )
            zmin = z[i];
    }

    create_grid( &xg, xp, &yg, yp ); // grid the data at
    plAlloc2dGrid( &zg, xp, yp );    // the output grided data
    clev = (PLFLT *) malloc( (size_t) nl * sizeof ( PLFLT ) );

    plcol0( 1 );
    plenv( xm, xM, ym, yM, 2, 0 );
    plcol0( 15 );
    pllab( "X", "Y", "The original data sampling" );
    for ( i = 0; i < pts; i++ )
    {
        plcol1( ( z[i] - zmin ) / ( zmax - zmin ) );
        // The following plstring call should be the the equivalent of
        // plpoin( 1, &x[i], &y[i], 5 ); Use plstring because it is
        // not deprecated like plpoin and has much more powerful
        // capabilities.  N.B. symbol 141 works for Hershey devices
        // (e.g., -dev xwin) only if plfontld( 0 ) has been called
        // while symbol 727 works only if plfontld( 1 ) has been
        // called.  The latter is the default which is why we use 727
        // here to represent a centred X (multiplication) symbol.
        // This dependence on plfontld is one of the limitations of
        // the Hershey escapes for PLplot, but the upside is you get
        // reasonable results for both Hershey and Unicode devices.
        plstring( 1, &x[i], &y[i], "#(727)" );
    }
    pladv( 0 );

    plssub( 3, 2 );

    for ( k = 0; k < 2; k++ )
    {
        pladv( 0 );
        for ( alg = 1; alg < 7; alg++ )
        {
            plgriddata( x, y, z, pts, xg, xp, yg, yp, zg, alg, opt[alg - 1] );

            // - CSA can generate NaNs (only interpolates?!).
            // - DTLI and NNI can generate NaNs for points outside the convex hull
            //      of the data points.
            // - NNLI can generate NaNs if a sufficiently thick triangle is not found
            //
            // PLplot should be NaN/Inf aware, but changing it now is quite a job...
            // so, instead of not plotting the NaN regions, a weighted average over
            // the neighbors is done.
            //

            if ( alg == GRID_CSA || alg == GRID_DTLI || alg == GRID_NNLI || alg == GRID_NNI )
            {
                int   ii, jj;
                PLFLT dist, d;

                for ( i = 0; i < xp; i++ )
                {
                    for ( j = 0; j < yp; j++ )
                    {
                        if ( isnan( zg[i][j] ) ) // average (IDW) over the 8 neighbors

                        {
                            zg[i][j] = 0.; dist = 0.;

                            for ( ii = i - 1; ii <= i + 1 && ii < xp; ii++ )
                            {
                                for ( jj = j - 1; jj <= j + 1 && jj < yp; jj++ )
                                {
                                    if ( ii >= 0 && jj >= 0 && !isnan( zg[ii][jj] ) )
                                    {
                                        d         = ( abs( ii - i ) + abs( jj - j ) ) == 1 ? 1. : 1.4142;
                                        zg[i][j] += zg[ii][jj] / ( d * d );
                                        dist     += d;
                                    }
                                }
                            }
                            if ( dist != 0. )
                                zg[i][j] /= dist;
                            else
                                zg[i][j] = zmin;
                        }
                    }
                }
            }

            plMinMax2dGrid( (const PLFLT * const *) zg, xp, yp, &lzM, &lzm );

            lzm = MIN( lzm, zmin );
            lzM = MAX( lzM, zmax );

            // Increase limits slightly to prevent spurious contours
            // due to rounding errors
            lzm = lzm - 0.01;
            lzM = lzM + 0.01;

            plcol0( 1 );

            pladv( alg );

            if ( k == 0 )
            {
                for ( i = 0; i < nl; i++ )
                    clev[i] = lzm + ( lzM - lzm ) / ( nl - 1 ) * i;

                plenv0( xm, xM, ym, yM, 2, 0 );
                plcol0( 15 );
                pllab( "X", "Y", title[alg - 1] );
                plshades( (const PLFLT * const *) zg, xp, yp, NULL, xm, xM, ym, yM,
                    clev, nl, 1., 0, 1., plfill, 1, NULL, NULL );
                plcol0( 2 );
            }
            else
            {
                for ( i = 0; i < nl; i++ )
                    clev[i] = lzm + ( lzM - lzm ) / ( nl - 1 ) * i;

                plvpor( 0.0, 1.0, 0.0, 0.9 );
                plwind( -1.1, 0.75, -0.65, 1.20 );
                //
                // For the comparison to be fair, all plots should have the
                // same z values, but to get the max/min of the data generated
                // by all algorithms would imply two passes. Keep it simple.
                //
                // plw3d(1., 1., 1., xm, xM, ym, yM, zmin, zmax, 30, -60);
                //

                plw3d( 1., 1., 1., xm, xM, ym, yM, lzm, lzM, 30, -40 );
                plbox3( "bntu", "X", 0., 0,
                    "bntu", "Y", 0., 0,
                    "bcdfntu", "Z", 0.5, 0 );
                plcol0( 15 );
                pllab( "", "", title[alg - 1] );
                plot3dc( xg, yg, (const PLFLT * const *) zg, xp, yp, DRAW_LINEXY | MAG_COLOR | BASE_CONT, clev, nl );
            }
        }
    }

    plend();

    free_data( x, y, z );
    free_grid( xg, yg );
    free( (void *) clev );
    plFree2dGrid( zg, xp, yp );
    exit( 0 );
}


void
create_grid( PLFLT **xi, int px, PLFLT **yi, int py )
{
    PLFLT *x, *y;
    int   i;

    x = *xi = (PLFLT *) malloc( (size_t) px * sizeof ( PLFLT ) );
    y = *yi = (PLFLT *) malloc( (size_t) py * sizeof ( PLFLT ) );

    for ( i = 0; i < px; i++ )
        *x++ = xm + ( xM - xm ) * i / ( px - 1. );

    for ( i = 0; i < py; i++ )
        *y++ = ym + ( yM - ym ) * i / ( py - 1. );
}

void
free_grid( PLFLT *xi, PLFLT *yi )
{
    free( (void *) xi );
    free( (void *) yi );
}

void
create_data( PLFLT **xi, PLFLT **yi, PLFLT **zi, int npts )
{
    int   i;
    PLFLT *x, *y, *z, r;
    PLFLT xt, yt;

    *xi = x = (PLFLT *) malloc( (size_t) npts * sizeof ( PLFLT ) );
    *yi = y = (PLFLT *) malloc( (size_t) npts * sizeof ( PLFLT ) );
    *zi = z = (PLFLT *) malloc( (size_t) npts * sizeof ( PLFLT ) );

    for ( i = 0; i < npts; i++ )
    {
        xt = ( xM - xm ) * plrandd();
        yt = ( yM - ym ) * plrandd();
        if ( !randn )
        {
            *x = xt + xm;
            *y = yt + ym;
        }
        else // std=1, meaning that many points are outside the plot range
        {
            *x = sqrt( -2. * log( xt ) ) * cos( 2. * M_PI * yt ) + xm;
            *y = sqrt( -2. * log( xt ) ) * sin( 2. * M_PI * yt ) + ym;
        }
        if ( !rosen )
        {
            r  = sqrt( ( *x ) * ( *x ) + ( *y ) * ( *y ) );
            *z = exp( -r * r ) * cos( 2.0 * M_PI * r );
        }
        else
        {
            *z = log( pow( 1. - *x, 2. ) + 100. * pow( *y - pow( *x, 2. ), 2. ) );
        }
        x++; y++; z++;
    }
}

void
free_data( PLFLT *x, PLFLT *y, PLFLT *z )
{
    free( (void *) x );
    free( (void *) y );
    free( (void *) z );
}