This file is indexed.

/usr/share/doc/libplplot12/examples/ada/x27a.adb is in libplplot-ada1-dev 5.10.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
-- $Id: x27a.adb 11860 2011-08-05 10:23:37Z andrewross $

-- Drawing "spirograph" curves - epitrochoids, cycolids, roulettes

-- Copyright (C) 2008 Jerry Bauck

-- This file is part of PLplot.

-- PLplot is free software; you can redistribute it and/or modify
-- it under the terms of the GNU Library General Public License as published
-- by the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.

-- PLplot is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-- GNU Library General Public License for more details.

-- You should have received a copy of the GNU Library General Public License
-- along with PLplot; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

with
    Ada.Numerics,
    Ada.Numerics.Long_Elementary_Functions,
    PLplot_Auxiliary,
    PLplot_Traditional;
use
    Ada.Numerics,
    Ada.Numerics.Long_Elementary_Functions,
    PLplot_Auxiliary,
    PLplot_Traditional;

------------------------------------------------------------------------------
-- Generates two kinds of plots:
--   - construction of a cycloid (animated)
--   - series of epitrochoids and hypotrochoids
------------------------------------------------------------------------------

procedure x27a is
    -- R, r, p, N
    -- R and r should be integers to give correct termination of the
    -- angle loop using gcd.
    -- N.B. N is just a place holder since it is no longer used
    -- (because we now have proper termination of the angle loop).
    params : Real_Matrix(0 .. 8, 0 .. 3) :=
      ((21.0,  7.0,  7.0,  3.0),
       (21.0,  7.0, 10.0,  3.0),
       (21.0, -7.0, 10.0,  3.0),
       (20.0,  3.0,  7.0, 20.0),
       (20.0,  3.0, 10.0, 20.0),
       (20.0, -3.0, 10.0, 20.0),
       (20.0, 13.0,  7.0, 20.0),
       (20.0, 13.0, 20.0, 20.0),
       (20.0,-13.0, 20.0, 20.0));

    fill : Boolean;

    -- To understand why spiro is written this way you need to understand the
    -- C code from which this was derived. In the main C program, params
    -- is a two-dimensional array with 9 rows numbered 0 .. 8 and 4 columns
    -- numbered 0 .. 3. When spiro is called, it is passed the _address_ of the
    -- element of params's ith row, 0th column--nothing else. Then, inside spiro,
    -- the corresponding entity (also called params!) appears as a
    -- _one-dimensional_ array whose 0th element shares the same address as what
    -- was passed from the main program. So memory locations starting there,
    -- and numbered from 0, represent the 1D array equivalent to the ith row of
    -- params in the main program. Wilma, call Barney--we're programming a
    -- micaprocessor here.
    procedure spiro(params : Real_Matrix; row : Integer; fill : Boolean) is
        NPNT : constant Integer := 2000;
        xcoord, ycoord : Real_Vector(0 .. NPNT);
        windings : Integer;
        steps    : Integer;
        phi      : Long_Float;
        phiw     : Long_Float;
        dphi     : Long_Float;
        xmin     : Long_Float;
        xmax     : Long_Float;
        xrange_adjust : Long_Float;
        ymin     : Long_Float;
        ymax     : Long_Float;
        yrange_adjust : Long_Float;

        function Trunc(a : Long_Float) return Integer renames PLplot_Auxiliary.Trunc;

        -- Calculate greatest common divisor following pseudo-code for the
        -- Euclidian algorithm at http://en.wikipedia.org/wiki/Euclidean_algorithm
        function gcd(a, b : Integer) return Integer is
            t : Integer;
            aa : Integer := a;
            bb : Integer := b;
        begin
            aa := abs(aa);
            bb := abs(bb);
            while bb /= 0 loop
                t := bb;
                bb := aa mod bb;
                aa := t;
            end loop;
            return aa;
        end gcd;

    begin -- spiro
        -- Fill the coordinates.
        -- Proper termination of the angle loop very near the beginning
        -- point, see http://mathforum.org/mathimages/index.php/Hypotrochoid
        windings := Trunc(abs(params(row, 1)) /
            Long_Float(gcd(Trunc(params(row, 0)), Trunc(params(row, 1)))));
        steps    := NPNT / windings;
        dphi     := 2.0 * pi / Long_Float(steps);
        for i in 0 .. windings * steps loop
            phi       := Long_Float(i) * dphi;
            phiw      := (params(row, 0) - params(row, 1)) / params(row, 1) * phi;
            xcoord(i) := (params(row, 0)-params(row, 1))*cos(phi)+params(row, 2)*cos(phiw);
            ycoord(i) := (params(row, 0)-params(row, 1))*sin(phi)-params(row, 2)*sin(phiw);
            if i = 0 then
                xmin := xcoord(i);
                xmax := xcoord(i);
                ymin := ycoord(i);
                ymax := ycoord(i);
            end if;
            if xmin > xcoord(i) then xmin := xcoord(i); end if;
            if xmax < xcoord(i) then xmax := xcoord(i); end if;
            if ymin > ycoord(i) then ymin := ycoord(i); end if;
            if ymax < ycoord(i) then ymax := ycoord(i); end if;
        end loop;

        xrange_adjust := 0.15 * (xmax - xmin);
        xmin := xmin - xrange_adjust;
        xmax := xmax + xrange_adjust;
        yrange_adjust := 0.15 * (ymax - ymin);
        ymin := ymin - yrange_adjust;
        ymax := ymax + yrange_adjust;

        plwind(xmin, xmax, ymin, ymax);
        plcol0(1);

        declare
            xcoord_local, ycoord_local : Real_Vector(0 .. steps * windings);
        begin
            xcoord_local := xcoord(0 .. steps * windings);
            ycoord_local := ycoord(0 .. steps * windings);
            if fill then
                plfill(xcoord_local, ycoord_local);
            else
                plline(xcoord_local, ycoord_local);
            end if;
        end;
    end spiro;

    procedure cycloid is
    begin
        null; -- TODO
    end cycloid;

    procedure arcs is
       NSEG : constant Integer := 8;
       theta : Long_Float;
       dtheta : Long_Float;
       a : Long_Float;
       b : Long_Float;
    begin

       theta := 0.0;
       dtheta := 360.0/Long_Float(NSEG);
       plenv( -10.0, 10.0, -10.0, 10.0, 1, 0 );

       -- Plot segments of circle in different colors
       for i in 0 .. NSEG-1 loop
          plcol0( (i mod 2) + 1 );
          plarc(0.0, 0.0, 8.0, 8.0, theta, theta + dtheta, 0.0, False);
          theta := theta + dtheta;
       end loop;

       -- Draw several filled ellipses inside the circle at different
       -- angles.
       a := 3.0;
       b := a * tan( (dtheta/180.0*pi)/2.0 );
       theta := dtheta/2.0;
       for i in 0 .. NSEG-1 loop
          plcol0( 2 - (i mod 2 ) );
          plarc( a*cos(theta/180.0*pi), a*sin(theta/180.0*pi), a, b, 0.0, 360.0, theta, True);
          theta := theta + dtheta;
       end loop;

    end arcs;

begin
    -- Parse and process command line arguments
    plparseopts(PL_PARSE_FULL);

    -- Initialize plplot
    plinit;

    -- Illustrate the construction of a cycloid
    cycloid;

    -- Loop over the various curves.
    -- First an overview, then all curves one by one
    plssub(3, 3) ; -- Three by three window

    -- Overview
    fill := False;
    for i in params'range(1) loop
        pladv(0);
        plvpor(0.0, 1.0, 0.0, 1.0);
        spiro(params, i, fill);
    end loop;

    -- Don't fill the curves.
    pladv(0) ;
    plssub(1, 1) ; -- One window per curve
    for i in params'range(1) loop
        pladv(0) ;
        plvpor(0.0, 1.0, 0.0, 1.0);
        spiro(params, i, fill);
    end loop;

    -- Fill the curves
    fill := True;
    pladv(0);
    plssub(1, 1); -- One window per curve
    for i in params'range(1) loop
        pladv(0) ;
        plvpor(0.0, 1.0, 0.0, 1.0);
        spiro(params, i, fill);
    end loop;

    arcs;

    -- Don't forget to call plend to finish off!
    plend;
end x27a;