This file is indexed.

/usr/include/openvdb/tools/Interpolation.h is in libopenvdb-dev 2.3.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Interpolation.h
///
/// Sampler classes such as PointSampler and BoxSampler that are intended for use
/// with tools::GridTransformer should operate in voxel space and must adhere to
/// the interface described in the example below:
/// @code
/// struct MySampler
/// {
///     // Return a short name that can be used to identify this sampler
///     // in error messages and elsewhere.
///     const char* name() { return "mysampler"; }
///
///     // Return the radius of the sampling kernel in voxels, not including
///     // the center voxel.  This is the number of voxels of padding that
///     // are added to all sides of a volume as a result of resampling.
///     int radius() { return 2; }
///
///     // Return true if scaling by a factor smaller than 0.5 (along any axis)
///     // should be handled via a mipmapping-like scheme of successive halvings
///     // of a grid's resolution, until the remaining scale factor is
///     // greater than or equal to 1/2.  Set this to false only when high-quality
///     // scaling is not required.
///     bool mipmap() { return true; }
///
///     // Specify if sampling at a location that is collocated with a grid point
///     // is guaranteed to return the exact value at that grid point.
///     // For most sampling kernels, this should be false.
///     bool consistent() { return false; }
///
///     // Sample the tree at the given coordinates and return the result in val.
///     // Return true if the sampled value is active.
///     template<class TreeT>
///     bool sample(const TreeT& tree, const Vec3R& coord, typename TreeT::ValueType& val);
/// };
/// @endcode

#ifndef OPENVDB_TOOLS_INTERPOLATION_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_INTERPOLATION_HAS_BEEN_INCLUDED

#include <cmath>
#include <boost/shared_ptr.hpp>
#include <openvdb/version.h> // for OPENVDB_VERSION_NAME
#include <openvdb/Platform.h> // for round()
#include <openvdb/math/Transform.h> // for Transform
#include <openvdb/Grid.h>
#include <openvdb/tree/ValueAccessor.h>

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

// The following samplers operate in voxel space.
// When the samplers are applied to grids holding vector or other non-scalar data,
// the data is assumed to be collocated.  For example, using the BoxSampler on a grid
// with ValueType Vec3f assumes that all three elements in a vector can be assigned
// the same physical location. Consider using the GridSampler below instead.

struct PointSampler
{
    static const char* name() { return "point"; }
    static int radius() { return 0; }
    static bool mipmap() { return false; }
    static bool consistent() { return true; }

    /// @brief Sample @a inTree at the nearest neighbor to @a inCoord
    /// and store the result in @a result.
    /// @return @c true if the sampled value is active.
    template<class TreeT>
    static bool sample(const TreeT& inTree, const Vec3R& inCoord,
        typename TreeT::ValueType& result);
};


struct BoxSampler
{
    static const char* name() { return "box"; }
    static int radius() { return 1; }
    static bool mipmap() { return true; }
    static bool consistent() { return true; }

    /// @brief Trilinearly reconstruct @a inTree at @a inCoord
    /// and store the result in @a result.
    /// @return @c true if any one of the sampled values is active.
    template<class TreeT>
    static bool sample(const TreeT& inTree, const Vec3R& inCoord,
        typename TreeT::ValueType& result);

    /// @brief Trilinearly reconstruct @a inTree at @a inCoord.
    /// @return the reconstructed value
    template<class TreeT>
    static typename TreeT::ValueType sample(const TreeT& inTree, const Vec3R& inCoord);

private:
    template<class ValueT, size_t N>
    static inline ValueT trilinearInterpolation(ValueT (& data)[N][N][N], const Vec3R& uvw);
};


struct QuadraticSampler
{
    static const char* name() { return "quadratic"; }
    static int radius() { return 1; }
    static bool mipmap() { return true; }
    static bool consistent() { return false; }

    /// @brief Triquadratically reconstruct @a inTree at @a inCoord
    /// and store the result in @a result.
    /// @return @c true if any one of the sampled values is active.
    template<class TreeT>
    static bool sample(const TreeT& inTree, const Vec3R& inCoord,
        typename TreeT::ValueType& result);
};


////////////////////////////////////////


// The following samplers operate in voxel space and are designed for Vec3
// staggered grid data (e.g., fluid simulations using the Marker-and-Cell approach
// associate elements of the velocity vector with different physical locations:
// the faces of a cube).

struct StaggeredPointSampler
{
    static const char* name() { return "point"; }
    static int radius() { return 0; }
    static bool mipmap() { return false; }
    static bool consistent() { return false; }

    /// @brief Sample @a inTree at the nearest neighbor to @a inCoord
    /// and store the result in @a result.
    /// @return true if the sampled value is active.
    template<class TreeT>
    static bool sample(const TreeT& inTree, const Vec3R& inCoord,
        typename TreeT::ValueType& result);
};


struct StaggeredBoxSampler
{
    static const char* name() { return "box"; }
    static int radius() { return 1; }
    static bool mipmap() { return true; }
    static bool consistent() { return false; }

    /// @brief Trilinearly reconstruct @a inTree at @a inCoord
    /// and store the result in @a result.
    /// @return true if any one of the sampled value is active.
    template<class TreeT>
    static bool sample(const TreeT& inTree, const Vec3R& inCoord,
        typename TreeT::ValueType& result);
};


struct StaggeredQuadraticSampler
{
    static const char* name() { return "quadratic"; }
    static int radius() { return 1; }
    static bool mipmap() { return true; }
    static bool consistent() { return false; }

    /// @brief Triquadratically reconstruct @a inTree at @a inCoord
    /// and store the result in @a result.
    /// @return true if any one of the sampled values is active.
    template<class TreeT>
    static bool sample(const TreeT& inTree, const Vec3R& inCoord,
        typename TreeT::ValueType& result);
};


////////////////////////////////////////


/// @brief Class that provides the interface for continuous sampling
/// of values in a tree.
///
/// @details Since trees support only discrete voxel sampling, TreeSampler
/// must be used to sample arbitrary continuous points in (world or
/// index) space.
///
/// @warning This implementation of the GridSampler stores a pointer
/// to a Tree for value access. While this is thread-safe it is
/// uncached and hence slow compared to using a
/// ValueAccessor. Consequently it is normally advisable to use the
/// template specialization below that employs a
/// ValueAccessor. However, care must be taken when dealing with
/// multi-threading (see warning below).
template<typename GridOrTreeType, typename SamplerType>
class GridSampler
{
public:
    typedef boost::shared_ptr<GridSampler>                      Ptr;
    typedef typename GridOrTreeType::ValueType                  ValueType;
    typedef typename TreeAdapter<GridOrTreeType>::GridType      GridType;
    typedef typename TreeAdapter<GridOrTreeType>::TreeType      TreeType;
    typedef typename TreeAdapter<GridOrTreeType>::AccessorType  AccessorType;

     /// @param grid  a grid to be sampled
    explicit GridSampler(const GridType& grid)
        : mTree(&(grid.tree())), mTransform(&(grid.transform())) {}

    /// @param tree  a tree to be sampled, or a ValueAccessor for the tree
    /// @param transform is used when sampling world space locations.
    GridSampler(const TreeType& tree, const math::Transform& transform)
        : mTree(&tree), mTransform(&transform) {}

    const math::Transform& transform() const { return *mTransform; }

    /// @brief Sample a point in index space in the grid.
    /// @param x Fractional x-coordinate of point in index-coordinates of grid
    /// @param y Fractional y-coordinate of point in index-coordinates of grid
    /// @param z Fractional z-coordinate of point in index-coordinates of grid
    template<typename RealType>
    ValueType sampleVoxel(const RealType& x, const RealType& y, const RealType& z) const
    {
        return this->isSample(Vec3d(x,y,z));
    }

    /// @brief Sample value in integer index space
    /// @param i Integer x-coordinate in index space
    /// @param j Integer y-coordinate in index space
    /// @param k Integer x-coordinate in index space
    ValueType sampleVoxel(typename Coord::ValueType i,
                          typename Coord::ValueType j,
                          typename Coord::ValueType k) const
    {
        return this->isSample(Coord(i,j,k));
    }

    /// @brief Sample value in integer index space
    /// @param ijk the location in index space
    ValueType isSample(const Coord& ijk) const { return mTree->getValue(ijk); }

    /// @brief Sample in fractional index space
    /// @param ispoint the location in index space
    ValueType isSample(const Vec3d& ispoint) const
    {
        ValueType result = zeroVal<ValueType>();
        SamplerType::sample(*mTree, ispoint, result);
        return result;
    }

    /// @brief Sample in world space
    /// @param wspoint the location in world space
    ValueType wsSample(const Vec3d& wspoint) const
    {
        ValueType result = zeroVal<ValueType>();
        SamplerType::sample(*mTree, mTransform->worldToIndex(wspoint), result);
        return result;
    }

private:
    const TreeType*        mTree;
    const math::Transform* mTransform;
}; // class GridSampler


/// @brief Specialization of GridSampler for construction from a ValueAccessor type
///
/// @note This version should normally be favoured over the one above
/// that takes a Grid or Tree. The reason is this version uses a
/// ValueAccessor that performs fast (cached) access where the
/// tree-based flavour performs slower (uncached) access.
///
/// @warning Since this version stores a pointer to an (externally
/// allocated) value accessor it is not threadsafe. Hence each thread
/// should have it own instance of a GridSampler constructed from a
/// local ValueAccessor. Alternatively the Grid/Tree-based GridSampler
/// is threadsafe, but also slower.
template<typename TreeT, typename SamplerType>
class GridSampler<tree::ValueAccessor<TreeT>, SamplerType>
{
public:
    typedef boost::shared_ptr<GridSampler>      Ptr;
    typedef typename TreeT::ValueType           ValueType;
    typedef TreeT                               TreeType;
    typedef Grid<TreeType>                      GridType;
    typedef typename tree::ValueAccessor<TreeT> AccessorType;

    /// @param acc  a ValueAccessor to be sampled
    /// @param transform is used when sampling world space locations.
    GridSampler(const AccessorType& acc,
                const math::Transform& transform)
        : mAccessor(&acc), mTransform(&transform) {}

     const math::Transform& transform() const { return *mTransform; }

    /// @brief Sample a point in index space in the grid.
    /// @param x Fractional x-coordinate of point in index-coordinates of grid
    /// @param y Fractional y-coordinate of point in index-coordinates of grid
    /// @param z Fractional z-coordinate of point in index-coordinates of grid
    template<typename RealType>
    ValueType sampleVoxel(const RealType& x, const RealType& y, const RealType& z) const
    {
        return this->isSample(Vec3d(x,y,z));
    }

    /// @brief Sample value in integer index space
    /// @param i Integer x-coordinate in index space
    /// @param j Integer y-coordinate in index space
    /// @param k Integer x-coordinate in index space
    ValueType sampleVoxel(typename Coord::ValueType i,
                          typename Coord::ValueType j,
                          typename Coord::ValueType k) const
    {
        return this->isSample(Coord(i,j,k));
    }

    /// @brief Sample value in integer index space
    /// @param ijk the location in index space
    ValueType isSample(const Coord& ijk) const { return mAccessor->getValue(ijk); }

    /// @brief Sample in fractional index space
    /// @param ispoint the location in index space
    ValueType isSample(const Vec3d& ispoint) const
    {
        ValueType result = zeroVal<ValueType>();
        SamplerType::sample(*mAccessor, ispoint, result);
        return result;
    }

    /// @brief Sample in world space
    /// @param wspoint the location in world space
    ValueType wsSample(const Vec3d& wspoint) const
    {
        ValueType result = zeroVal<ValueType>();
        SamplerType::sample(*mAccessor, mTransform->worldToIndex(wspoint), result);
        return result;
    }

private:
    const AccessorType*    mAccessor;//not thread-safe!
    const math::Transform* mTransform;
};//Specialization of GridSampler


////////////////////////////////////////


/// @brief This is a simple convenience class that allows for sampling
/// from a source grid into the index space of a target grid. At
/// construction the source and target grids are checked for alignment
/// which potentially renders interpolation unnecessary. Else
/// interpolation is performed according to the templated Sampler
/// type.
///
/// @warning For performance reasons the check for alignment of the
/// two grids is only performed at construction time!
template<typename GridOrTreeT,
         typename SamplerT>
class DualGridSampler
{
public:
    typedef typename GridOrTreeT::ValueType               ValueType;
    typedef typename TreeAdapter<GridOrTreeT>::GridType   GridType;
    typedef typename TreeAdapter<GridOrTreeT>::TreeType   TreeType;
    typedef typename TreeAdapter<GridType>::AccessorType  AccessorType;

    /// @brief Grid and transform constructor.
    /// @param sourceGrid Source grid.
    /// @param targetXform Transform of the target grid.
    DualGridSampler(const GridType& sourceGrid,
                    const math::Transform& targetXform)
        : mSourceTree(&(sourceGrid.tree()))
        , mSourceXform(&(sourceGrid.transform()))
        , mTargetXform(&targetXform)
        , mAligned(targetXform == *mSourceXform)
    {
    }
    /// @brief Tree and transform constructor.
    /// @param sourceTree Source tree.
    /// @param sourceXform Transform of the source grid.
    /// @param targetXform Transform of the target grid.
    DualGridSampler(const TreeType& sourceTree,
                    const math::Transform& sourceXform,
                    const math::Transform& targetXform)
        : mSourceTree(&sourceTree)
        , mSourceXform(&sourceXform)
        , mTargetXform(&targetXform)
        , mAligned(targetXform == sourceXform)
    {
    }
    /// @brief Return the value of the source grid at the index
    /// coordinates, ijk, relative to the target grid (or its tranform).  
    inline ValueType operator()(const Coord& ijk) const
    {
        if (mAligned) return mSourceTree->getValue(ijk);
        const Vec3R world = mTargetXform->indexToWorld(ijk);
        return SamplerT::sample(*mSourceTree, mSourceXform->worldToIndex(world));
    }
    /// @brief Return true if the two grids are aligned.
    inline bool isAligned() const { return mAligned; }
private:
    const TreeType*        mSourceTree;
    const math::Transform* mSourceXform;
    const math::Transform* mTargetXform;
    const bool             mAligned;
};// DualGridSampler  

/// @brief Specialization of DualGridSampler for construction from a ValueAccessor type.
template<typename TreeT,
         typename SamplerT>
class DualGridSampler<tree::ValueAccessor<TreeT>, SamplerT>
{
    public:
    typedef typename TreeT::ValueType ValueType;
    typedef TreeT                     TreeType;
    typedef Grid<TreeType>            GridType;
    typedef typename tree::ValueAccessor<TreeT> AccessorType;

    /// @brief ValueAccessor and transform constructor.
    /// @param sourceAccessor ValueAccessor into the source grid.
    /// @param sourceXform Transform for the source grid.
    /// @param targetXform Transform for the target grid.
    DualGridSampler(const AccessorType& sourceAccessor,
                    const math::Transform& sourceXform,
                    const math::Transform& targetXform)
        : mSourceAcc(&sourceAccessor)
        , mSourceXform(&sourceXform)
        , mTargetXform(&targetXform)
        , mAligned(targetXform == sourceXform)
    {
    }
    /// @brief Return the value of the source grid at the index
    /// coordinates, ijk, relative to the target grid.  
    inline ValueType operator()(const Coord& ijk) const
    {
        if (mAligned) return mSourceAcc->getValue(ijk);
        const Vec3R world = mTargetXform->indexToWorld(ijk);
        return SamplerT::sample(*mSourceAcc, mSourceXform->worldToIndex(world));
    }
    /// @brief Return true if the two grids are aligned.
    inline bool isAligned() const { return mAligned; }
private:
    const AccessorType*    mSourceAcc;
    const math::Transform* mSourceXform;
    const math::Transform* mTargetXform;
    const bool             mAligned;
};//Specialization of DualGridSampler

////////////////////////////////////////


namespace local_util {

inline Vec3i
floorVec3(const Vec3R& v)
{
    return Vec3i(int(std::floor(v(0))), int(std::floor(v(1))), int(std::floor(v(2))));
}


inline Vec3i
ceilVec3(const Vec3R& v)
{
    return Vec3i(int(std::ceil(v(0))), int(std::ceil(v(1))), int(std::ceil(v(2))));
}


inline Vec3i
roundVec3(const Vec3R& v)
{
    return Vec3i(int(::round(v(0))), int(::round(v(1))), int(::round(v(2))));
}

} // namespace local_util


////////////////////////////////////////


template<class TreeT>
inline bool
PointSampler::sample(const TreeT& inTree, const Vec3R& inCoord,
    typename TreeT::ValueType& result)
{
    Vec3i inIdx = local_util::roundVec3(inCoord);
    return inTree.probeValue(Coord(inIdx), result);
}


////////////////////////////////////////


template<class ValueT, size_t N>
inline ValueT
BoxSampler::trilinearInterpolation(ValueT (& data)[N][N][N], const Vec3R& uvw)
{
    // Trilinear interpolation:
    // The eight surrounding latice values are used to construct the result. \n
    // result(x,y,z) =
    //     v000 (1-x)(1-y)(1-z) + v001 (1-x)(1-y)z + v010 (1-x)y(1-z) + v011 (1-x)yz
    //   + v100 x(1-y)(1-z)     + v101 x(1-y)z     + v110 xy(1-z)     + v111 xyz

    ValueT resultA, resultB;

    resultA = data[0][0][0] + ValueT((data[0][0][1] - data[0][0][0]) * uvw[2]);
    resultB = data[0][1][0] + ValueT((data[0][1][1] - data[0][1][0]) * uvw[2]);
    ValueT result1 = resultA + ValueT((resultB-resultA) * uvw[1]);

    resultA = data[1][0][0] + ValueT((data[1][0][1] - data[1][0][0]) * uvw[2]);
    resultB = data[1][1][0] + ValueT((data[1][1][1] - data[1][1][0]) * uvw[2]);
    ValueT result2 = resultA + ValueT((resultB - resultA) * uvw[1]);

    return result1 + ValueT(uvw[0] * (result2 - result1));
}


template<class TreeT>
inline bool
BoxSampler::sample(const TreeT& inTree, const Vec3R& inCoord,
    typename TreeT::ValueType& result)
{
    typedef typename TreeT::ValueType ValueT;

    Vec3i inIdx = local_util::floorVec3(inCoord);
    Vec3R uvw = inCoord - inIdx;

    // Retrieve the values of the eight voxels surrounding the
    // fractional source coordinates.
    ValueT data[2][2][2];

    bool hasActiveValues = false;
    Coord ijk(inIdx);
    hasActiveValues |= inTree.probeValue(ijk, data[0][0][0]);  // i, j, k
    ijk[2] += 1;
    hasActiveValues |= inTree.probeValue(ijk, data[0][0][1]);  // i, j, k + 1
    ijk[1] += 1;
    hasActiveValues |= inTree.probeValue(ijk, data[0][1][1]); // i, j+1, k + 1
    ijk[2] = inIdx[2];
    hasActiveValues |= inTree.probeValue(ijk, data[0][1][0]);  // i, j+1, k
    ijk[0] += 1;
    ijk[1] = inIdx[1];
    hasActiveValues |= inTree.probeValue(ijk, data[1][0][0]); // i+1, j, k
    ijk[2] += 1;
    hasActiveValues |= inTree.probeValue(ijk, data[1][0][1]); // i+1, j, k + 1
    ijk[1] += 1;
    hasActiveValues |= inTree.probeValue(ijk, data[1][1][1]); // i+1, j+1, k + 1
    ijk[2] = inIdx[2];
    hasActiveValues |= inTree.probeValue(ijk, data[1][1][0]); // i+1, j+1, k

    result = trilinearInterpolation(data, uvw);
    return hasActiveValues;
}


template<class TreeT>
inline typename TreeT::ValueType
BoxSampler::sample(const TreeT& inTree, const Vec3R& inCoord)
{
    typedef typename TreeT::ValueType ValueT;

    Vec3i inIdx = local_util::floorVec3(inCoord);
    Vec3R uvw = inCoord - inIdx;

    // Retrieve the values of the eight voxels surrounding the
    // fractional source coordinates.
    ValueT data[2][2][2];

    Coord ijk(inIdx);
    data[0][0][0] = inTree.getValue(ijk);  // i, j, k
    ijk[2] += 1;
    data[0][0][1] = inTree.getValue(ijk);  // i, j, k + 1
    ijk[1] += 1;
    data[0][1][1] = inTree.getValue(ijk); // i, j+1, k + 1
    ijk[2] = inIdx[2];
    data[0][1][0] = inTree.getValue(ijk);  // i, j+1, k
    ijk[0] += 1;
    ijk[1] = inIdx[1];
    data[1][0][0] = inTree.getValue(ijk); // i+1, j, k
    ijk[2] += 1;
    data[1][0][1] = inTree.getValue(ijk); // i+1, j, k + 1
    ijk[1] += 1;
    data[1][1][1] = inTree.getValue(ijk); // i+1, j+1, k + 1
    ijk[2] = inIdx[2];
    data[1][1][0] = inTree.getValue(ijk); // i+1, j+1, k

    return trilinearInterpolation(data, uvw);
}


////////////////////////////////////////


template<class TreeT>
inline bool
QuadraticSampler::sample(const TreeT& inTree, const Vec3R& inCoord,
    typename TreeT::ValueType& result)
{
    typedef typename TreeT::ValueType ValueT;

    Vec3i
        inIdx = local_util::floorVec3(inCoord),
        inLoIdx = inIdx - Vec3i(1, 1, 1);
    Vec3R frac = inCoord - inIdx;

    // Retrieve the values of the 27 voxels surrounding the
    // fractional source coordinates.
    bool active = false;
    ValueT v[3][3][3];
    for (int dx = 0, ix = inLoIdx.x(); dx < 3; ++dx, ++ix) {
        for (int dy = 0, iy = inLoIdx.y(); dy < 3; ++dy, ++iy) {
            for (int dz = 0, iz = inLoIdx.z(); dz < 3; ++dz, ++iz) {
                if (inTree.probeValue(Coord(ix, iy, iz), v[dx][dy][dz])) {
                    active = true;
                }
            }
        }
    }

    /// @todo For vector types, interpolate over each component independently.
    ValueT vx[3];
    for (int dx = 0; dx < 3; ++dx) {
        ValueT vy[3];
        for (int dy = 0; dy < 3; ++dy) {
            // Fit a parabola to three contiguous samples in z
            // (at z=-1, z=0 and z=1), then evaluate the parabola at z',
            // where z' is the fractional part of inCoord.z, i.e.,
            // inCoord.z - inIdx.z.  The coefficients come from solving
            //
            // | (-1)^2  -1   1 || a |   | v0 |
            // |    0     0   1 || b | = | v1 |
            // |   1^2    1   1 || c |   | v2 |
            //
            // for a, b and c.
            const ValueT* vz = &v[dx][dy][0];
            const ValueT
                az = static_cast<ValueT>(0.5 * (vz[0] + vz[2]) - vz[1]),
                bz = static_cast<ValueT>(0.5 * (vz[2] - vz[0])),
                cz = static_cast<ValueT>(vz[1]);
            vy[dy] = static_cast<ValueT>(frac.z() * (frac.z() * az + bz) + cz);
        }
        // Fit a parabola to three interpolated samples in y, then
        // evaluate the parabola at y', where y' is the fractional
        // part of inCoord.y.
        const ValueT
            ay = static_cast<ValueT>(0.5 * (vy[0] + vy[2]) - vy[1]),
            by = static_cast<ValueT>(0.5 * (vy[2] - vy[0])),
            cy = static_cast<ValueT>(vy[1]);
        vx[dx] = static_cast<ValueT>(frac.y() * (frac.y() * ay + by) + cy);
    }
    // Fit a parabola to three interpolated samples in x, then
    // evaluate the parabola at the fractional part of inCoord.x.
    const ValueT
        ax = static_cast<ValueT>(0.5 * (vx[0] + vx[2]) - vx[1]),
        bx = static_cast<ValueT>(0.5 * (vx[2] - vx[0])),
        cx = static_cast<ValueT>(vx[1]);
    result = static_cast<ValueT>(frac.x() * (frac.x() * ax + bx) + cx);

    return active;
}


////////////////////////////////////////


template<class TreeT>
inline bool
StaggeredPointSampler::sample(const TreeT& inTree, const Vec3R& inCoord,
    typename TreeT::ValueType& result)
{
    typedef typename TreeT::ValueType ValueType;

    ValueType tempX, tempY, tempZ;
    bool active = false;

    active = PointSampler::sample<TreeT>(inTree, inCoord + Vec3R(0.5, 0, 0), tempX) || active;
    active = PointSampler::sample<TreeT>(inTree, inCoord + Vec3R(0, 0.5, 0), tempY) || active;
    active = PointSampler::sample<TreeT>(inTree, inCoord + Vec3R(0, 0, 0.5), tempZ) || active;

    result.x() = tempX.x();
    result.y() = tempY.y();
    result.z() = tempZ.z();

    return active;
}


////////////////////////////////////////


template<class TreeT>
inline bool
StaggeredBoxSampler::sample(const TreeT& inTree, const Vec3R& inCoord,
    typename TreeT::ValueType& result)
{
    typedef typename TreeT::ValueType ValueType;

    ValueType tempX, tempY, tempZ;
    tempX = tempY = tempZ = zeroVal<ValueType>();
    bool active = false;

    active = BoxSampler::sample<TreeT>(inTree, inCoord + Vec3R(0.5, 0, 0), tempX) || active;
    active = BoxSampler::sample<TreeT>(inTree, inCoord + Vec3R(0, 0.5, 0), tempY) || active;
    active = BoxSampler::sample<TreeT>(inTree, inCoord + Vec3R(0, 0, 0.5), tempZ) || active;

    result.x() = tempX.x();
    result.y() = tempY.y();
    result.z() = tempZ.z();

    return active;
}


////////////////////////////////////////


template<class TreeT>
inline bool
StaggeredQuadraticSampler::sample(const TreeT& inTree, const Vec3R& inCoord,
    typename TreeT::ValueType& result)
{
    typedef typename TreeT::ValueType ValueType;

    ValueType tempX, tempY, tempZ;
    bool active = false;

    active = QuadraticSampler::sample<TreeT>(inTree, inCoord + Vec3R(0.5, 0, 0), tempX) || active;
    active = QuadraticSampler::sample<TreeT>(inTree, inCoord + Vec3R(0, 0.5, 0), tempY) || active;
    active = QuadraticSampler::sample<TreeT>(inTree, inCoord + Vec3R(0, 0, 0.5), tempZ) || active;

    result.x() = tempX.x();
    result.y() = tempY.y();
    result.z() = tempZ.z();

    return active;
}

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_INTERPOLATION_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )