This file is indexed.

/usr/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/OptimizePick.h is in libopenms-dev 1.11.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// --------------------------------------------------------------------------
//                   OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of any author or any participating institution
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Alexandra Zerck $
// $Authors: Eva Lange $
// --------------------------------------------------------------------------

#ifndef OPENMS_TRANSFORMATIONS_RAW2PEAK_OPTIMIZEPICK_H
#define OPENMS_TRANSFORMATIONS_RAW2PEAK_OPTIMIZEPICK_H

#include <OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakShape.h>
#include <OpenMS/KERNEL/Peak1D.h>

#include <gsl/gsl_vector.h>
#include <gsl/gsl_multifit_nlin.h>
#include <gsl/gsl_blas.h>

#include <iostream>
#include <fstream>
#include <vector>

namespace OpenMS
{
  /** @brief Namespace for all functions and classes needed for the gsl levenberg-marquard algorithm.

      We have to use function pointers for the gsl and can't put them into
      a class, so we provide an extra namespace.
  */
  namespace OptimizationFunctions
  {
    /// Raw data vector type
    typedef std::vector<Peak1D> RawDataVector;
    /// Raw data iterator type
    typedef RawDataVector::iterator PeakIterator;

    /** @brief Class for the penalty factors used during the optimization.

        A great deviation (squared deviation) of a peak shape's position or its left or right width parameter can be penalised.
        In each iteration the penalty (for each peak shape) is computed by:
                penalty = penalty_pos * pow(p_position - old_position, 2)
                        + penalty_lwidth * pow(p_width_l - old_width_l, 2)
                        + penalty_rwidth * pow(p_width_r - old_width_r, 2);
    */
    struct OPENMS_DLLAPI PenaltyFactors
    {
      PenaltyFactors() :
        pos(0), lWidth(0), rWidth(0) {}
      PenaltyFactors(const PenaltyFactors & p) :
        pos(p.pos), lWidth(p.lWidth), rWidth(p.rWidth) {}
      inline PenaltyFactors & operator=(const PenaltyFactors & p)
      {
        pos = p.pos;
        lWidth = p.lWidth;
        rWidth = p.rWidth;

        return *this;
      }

      ~PenaltyFactors(){}

      /// Penalty factor for the peak shape's position
      double pos;
      /// Penalty factor for the peak shape's left width parameter
      double lWidth;
      /// Penalty factor for the peak shape's right width parameter
      double rWidth;
    };

    /// Evaluation of the target function for nonlinear optimization.
    int residual(const gsl_vector * x, void * params, gsl_vector * f);

    /// Compute the Jacobian of the residual, where each row of the matrix corresponds to a point in the data.
    int jacobian(const gsl_vector * x, void * params, gsl_matrix * J);

    /// Driver function for the evaluation of function and jacobian.
    int evaluate(const gsl_vector * x, void * params, gsl_vector * f, gsl_matrix * J);

    /// Print all peak shapes
    void printSignal(const gsl_vector * x, void * param, float resolution = 0.25);
  }


  /**
    @brief This class provides the non-linear optimization of the peak parameters.

    Given a vector of peak shapes, this class optimizes all peak shapes parameters using a non-linear optimization.
    For the non-linear optimization we use the Levenberg-Marquardt algorithm provided by the gsl.
  */
  class OPENMS_DLLAPI OptimizePick
  {
public:

    struct Data
    {
      /// Positions and intensity values of the raw data
      std::vector<double> positions;
      std::vector<double> signal;
      /// This container contains the peak shapes to be optimized
      std::vector<PeakShape> peaks;

      OptimizationFunctions::PenaltyFactors penalties;

    };


    /// Raw data vector type
    typedef std::vector<Peak1D> RawDataVector;
    /// Raw data iterator type
    typedef RawDataVector::iterator PeakIterator;


    /// Constructor
    OptimizePick() :
      max_iteration_(0),
      eps_abs_(0),
      eps_rel_(0) {}

    /// Constructor to set the penalty factors, the number of optimization iterations as well as the threshold for the absolute and the relative error.
    OptimizePick(const struct OptimizationFunctions::PenaltyFactors & penalties_,
                 const int max_iteration_,
                 const double eps_abs_,
                 const double eps_rel_);

    /// Destructor
    ~OptimizePick();

    /// Non-mutable access to the penalty factors
    inline const struct OptimizationFunctions::PenaltyFactors & getPenalties() const { return penalties_; }
    /// Mutable access to the penalty factors
    inline struct OptimizationFunctions::PenaltyFactors & getPenalties() { return penalties_; }
    /// Mutable access to the penalty factors
    inline void setPenalties(const struct OptimizationFunctions::PenaltyFactors & penalties) { penalties_ = penalties; }

    /// Non-mutable access to the number of iterations
    inline UInt getNumberIterations() const { return max_iteration_; }
    /// Mutable access to the number of iterations
    inline unsigned int & getNumberIterations() { return max_iteration_; }
    /// Mutable access to the number of iterations
    inline void setNumberIterations(const int max_iteration) { max_iteration_ = max_iteration; }

    /// Non-mutable access to the maximum absolute error
    inline DoubleReal getMaxAbsError() const { return eps_abs_; }
    /// Mutable access to the maximum absolute error
    inline double & getMaxAbsError() { return eps_abs_; }
    /// Mutable access to the maximum absolute error
    inline void setMaxAbsError(double eps_abs) { eps_abs_ = eps_abs; }

    /// Non-mutable access to the maximum relative error
    inline DoubleReal getMaxRelError() const { return eps_rel_; }
    /// Mutable access to the maximum relative error
    inline double & getMaxRelError() { return eps_rel_; }
    /// Mutable access to the maximum relative error
    inline void setMaxRelError(double eps_rel) { eps_rel_ = eps_rel; }

    /// Start the optimization of the peak shapes peaks. The original peak shapes will be subsituted by the optimized peak shapes.
    void optimize(std::vector<PeakShape> & peaks, Data & data);


protected:
    /// Penalty factors
    struct OptimizationFunctions::PenaltyFactors penalties_;

    /// Maximum number of iterations during optimization
    unsigned int max_iteration_;

    /// Maximum absolute and relative error used in the optimization.
    double eps_abs_;
    double eps_rel_;

//       /** @brief Returns the squared pearson coefficient.

//         Computes the correlation of the peak and the original data given by the peak enpoints.
//         If the value is near 1, the fitted peakshape and the raw data are expected to be very similar.
//     */
//     double correlate_(const PeakShape& peak,
//                                          double left_endpoint,
//                                          double right_endpoint,Data& data);

  };
}

#endif