/usr/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ModelFitter.h is in libopenms-dev 1.11.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 | // --------------------------------------------------------------------------
// OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of any author or any participating institution
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Clemens Groepl $
// $Authors: $
// --------------------------------------------------------------------------
#ifndef OPENMS_TRANSFORMATIONS_FEATUREFINDER_MODELFITTER_H
#define OPENMS_TRANSFORMATIONS_FEATUREFINDER_MODELFITTER_H
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeaFiModule.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/ProductModel.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/LmaIsotopeModel.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/Fitter1D.h>
#include <OpenMS/MATH/STATISTICS/AsymmetricStatistics.h>
#include <OpenMS/MATH/STATISTICS/StatisticFunctions.h>
#include <OpenMS/CONCEPT/Factory.h>
#include <boost/math/special_functions/fpclassify.hpp>
#include <iostream>
#include <fstream>
#include <numeric>
#include <cmath>
#include <vector>
#include <set>
namespace OpenMS
{
/**
@brief Tests a group of data points in an LC-MS map for goodness-of-fit with a 2D averagine model.
The ModelFitter class uses a gaussian or isotope model in m/z and bigauss,
lmagauss (bigauss with Levenberg-Marquardt) or emg (exponentially modified
Gaussian with lma optimized parameters) in retention time.
For the isotope model, we test different charge states and peaks widths.
@todo Fix problem with other peak types than Peak1D and enable the respective tests for FeatureFinderAlgorithmSimple, FeatureFinderAlgorithmSimplest, FeatureFinderAlgorithmWavelet (Clemens)
@htmlinclude OpenMS_ModelFitter.parameters
@ingroup FeatureFinder
*/
template <class PeakType, class FeatureType>
class ModelFitter :
public FeaFiModule<PeakType, FeatureType>,
public FeatureFinderDefs
{
public:
/// IndexSet iterator
typedef IndexSet::const_iterator IndexSetIter;
/// Quality of a feature
typedef Feature::QualityType QualityType;
/// Single coordinate
typedef Feature::CoordinateType CoordinateType;
/// Single intensity
typedef Feature::IntensityType IntensityType;
/// Isotope charge
typedef Feature::ChargeType ChargeType;
/// FeaFiModule
typedef FeaFiModule<PeakType, FeatureType> Base;
/// Raw data container type using for the temporary storage of the input data
typedef std::vector<PeakType> RawDataArrayType;
enum
{
RT = Peak2D::RT,
MZ = Peak2D::MZ
};
/// Constructor
ModelFitter(const MSExperiment<PeakType> * map, FeatureMap<FeatureType> * features, FeatureFinder * ff) :
Base(map, features, ff),
model2D_(),
mz_stat_(),
rt_stat_(),
monoisotopic_mz_(0),
#ifdef DEBUG_FEATUREFINDER
counter_(1),
#endif
iso_stdev_first_(0),
iso_stdev_last_(0),
iso_stdev_stepsize_(0),
first_mz_model_(0),
last_mz_model_(0),
quality_rt_(0),
quality_mz_(0)
{
this->setName("ModelFitter");
this->defaults_.setValue("fit_algorithm", "simple", "Fitting algorithm type (internal parameter).", StringList::create("advanced"));
std::vector<String> fit_opts;
fit_opts.push_back("simple");
fit_opts.push_back("simplest");
fit_opts.push_back("wavelet");
this->defaults_.setValidStrings("fit_algorithm", fit_opts);
this->defaults_.setValue("max_iteration", 500, "Maximum number of iterations for fitting with Levenberg-Marquardt algorithm.", StringList::create("advanced"));
this->defaults_.setMinInt("max_iteration", 1);
this->defaults_.setValue("deltaAbsError", 0.0001, "Absolute error used by the Levenberg-Marquardt algorithm.", StringList::create("advanced"));
this->defaults_.setMinFloat("deltaAbsError", 0.0);
this->defaults_.setValue("deltaRelError", 0.0001, "Relative error used by the Levenberg-Marquardt algorithm.", StringList::create("advanced"));
this->defaults_.setMinFloat("deltaRelError", 0.0);
this->defaults_.setValue("tolerance_stdev_bounding_box", 3.0f, "Bounding box has range [minimim of data, maximum of data] enlarged by tolerance_stdev_bounding_box times the standard deviation of the data", StringList::create("advanced"));
this->defaults_.setMinFloat("tolerance_stdev_bounding_box", 0.0);
this->defaults_.setValue("intensity_cutoff_factor", 0.05f, "Cutoff peaks with a predicted intensity below intensity_cutoff_factor times the maximal intensity of the model");
this->defaults_.setMinFloat("intensity_cutoff_factor", 0.0);
this->defaults_.setMaxFloat("intensity_cutoff_factor", 1.0);
this->defaults_.setValue("feature_intensity_sum", 1, "Determines what is reported as feature intensity.\n1: the sum of peak intensities;\n0: the maximum intensity of all peaks", StringList::create("advanced"));
this->defaults_.setMinInt("feature_intensity_sum", 0);
this->defaults_.setMaxInt("feature_intensity_sum", 1);
this->defaults_.setValue("min_num_peaks:final", 5, "Minimum number of peaks left after cutoff. If smaller, feature will be discarded.");
this->defaults_.setMinInt("min_num_peaks:final", 1);
this->defaults_.setValue("min_num_peaks:extended", 10, "Minimum number of peaks after extension. If smaller, feature will be discarded.");
this->defaults_.setMinInt("min_num_peaks:extended", 1);
this->defaults_.setSectionDescription("min_num_peaks", "Required number of peaks for a feature.");
this->defaults_.setValue("rt:interpolation_step", 0.2f, "Step size in seconds used to interpolate model for RT.");
this->defaults_.setMinFloat("rt:interpolation_step", 0.0);
this->defaults_.setSectionDescription("rt", "Model settings in RT dimension.");
this->defaults_.setValue("mz:interpolation_step", 0.03f, "Interpolation step size for m/z.");
this->defaults_.setMinFloat("mz:interpolation_step", 0.001);
this->defaults_.setValue("mz:model_type:first", 1, "Numeric id of first m/z model fitted (usually indicating the charge state), 0 = no isotope pattern (fit a single gaussian).");
this->defaults_.setMinInt("mz:model_type:first", 0);
this->defaults_.setValue("mz:model_type:last", 4, "Numeric id of last m/z model fitted (usually indicating the charge state), 0 = no isotope pattern (fit a single gaussian).");
this->defaults_.setMinInt("mz:model_type:last", 0);
this->defaults_.setSectionDescription("mz", "Model settings in m/z dimension.");
this->defaults_.setValue("quality:type", "Correlation", "Type of the quality measure used to assess the fit of model vs data.", StringList::create("advanced"));
std::vector<String> quality_opts;
quality_opts.push_back("Correlation");
quality_opts.push_back("RankCorrelation");
this->defaults_.setValidStrings("quality:type", quality_opts);
this->defaults_.setValue("quality:minimum", 0.65f, "Minimum quality of fit, features below this threshold are discarded.");
this->defaults_.setMinFloat("quality:minimum", 0.0);
this->defaults_.setMaxFloat("quality:minimum", 1.0);
this->defaults_.setSectionDescription("quality", "Fitting quality settings.");
this->defaults_.setValue("isotope_model:stdev:first", 0.04f, "First standard deviation to be considered for isotope model.");
this->defaults_.setMinFloat("isotope_model:stdev:first", 0.0);
this->defaults_.setValue("isotope_model:stdev:last", 0.12f, "Last standard deviation to be considered for isotope model.");
this->defaults_.setMinFloat("isotope_model:stdev:last", 0.0);
this->defaults_.setValue("isotope_model:stdev:step", 0.04f, "Step size for standard deviations considered for isotope model.");
this->defaults_.setMinFloat("isotope_model:stdev:step", 0.0);
this->defaults_.setSectionDescription("isotope_model:stdev", "Instrument resolution settings for m/z dimension.");
this->defaults_.setValue("isotope_model:averagines:C", 0.04443989f, "Number of C atoms per Dalton of the mass.", StringList::create("advanced"));
this->defaults_.setMinFloat("isotope_model:averagines:C", 0.0);
this->defaults_.setValue("isotope_model:averagines:H", 0.06981572f, "Number of H atoms per Dalton of the mass.", StringList::create("advanced"));
this->defaults_.setMinFloat("isotope_model:averagines:H", 0.0);
this->defaults_.setValue("isotope_model:averagines:N", 0.01221773f, "Number of N atoms per Dalton of the mass.", StringList::create("advanced"));
this->defaults_.setMinFloat("isotope_model:averagines:N", 0.0);
this->defaults_.setValue("isotope_model:averagines:O", 0.01329399f, "Number of O atoms per Dalton of the mass.", StringList::create("advanced"));
this->defaults_.setMinFloat("isotope_model:averagines:O", 0.0);
this->defaults_.setValue("isotope_model:averagines:S", 0.00037525f, "Number of S atoms per Dalton of the mass.", StringList::create("advanced"));
this->defaults_.setMinFloat("isotope_model:averagines:S", 0.0);
this->defaults_.setSectionDescription("isotope_model:averagines", "Averagines are used to approximate the number of atoms (C,H,N,O,S) which a peptide of a given mass contains.");
this->defaults_.setValue("isotope_model:isotope:trim_right_cutoff", 0.001f, "Cutoff for averagine distribution, trailing isotopes below this relative intensity are not considered.", StringList::create("advanced"));
this->defaults_.setMinFloat("isotope_model:isotope:trim_right_cutoff", 0.0);
this->defaults_.setValue("isotope_model:isotope:maximum", 100, "Maximum number of isotopes being used for the IsotopeModel.", StringList::create("advanced"));
this->defaults_.setMinInt("isotope_model:isotope:maximum", 1);
this->defaults_.setValue("isotope_model:isotope:distance", 1.000495f, "Distance between consecutive isotopic peaks.", StringList::create("advanced"));
this->defaults_.setMinFloat("isotope_model:isotope:distance", 0.0);
this->defaults_.setSectionDescription("isotope_model", "Settings of the isotope model (m/z).");
this->defaultsToParam_();
}
/// Destructor
virtual ~ModelFitter()
{
}
/** @brief Sets or fixed the monoisotopic m/z at a specific position.
* @param mz The monoisotopic m/z that occurres in the current data set. */
void setMonoIsotopicMass(CoordinateType mz)
{
monoisotopic_mz_ = mz;
}
/**
@brief Return next feature
@exception Exception::UnableToFit is thrown if fitting cannot be performed
@exception Exception::InvalidParameter if first and last charge to test do not define a range (first<=last)
*/
Feature fit(const ChargedIndexSet & index_set)
{
// Test the number of peaks (not enough peaks to fit)
if (index_set.size() < UInt(this->param_.getValue("min_num_peaks:extended")))
{
String mess = String("Skipping feature, IndexSet size too small: ") + index_set.size();
throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-IndexSet", mess.c_str());
}
// Calculate statistics for mz and rt
mz_stat_.update
(
Internal::IntensityIterator<ModelFitter>(index_set.begin(), this),
Internal::IntensityIterator<ModelFitter>(index_set.end(), this),
Internal::MzIterator<ModelFitter>(index_set.begin(), this)
);
rt_stat_.update
(
Internal::IntensityIterator<ModelFitter>(index_set.begin(), this),
Internal::IntensityIterator<ModelFitter>(index_set.end(), this),
Internal::RtIterator<ModelFitter>(index_set.begin(), this)
);
// set charge
if (index_set.charge != 0)
{
first_mz_model_ = index_set.charge;
last_mz_model_ = index_set.charge;
}
if (first_mz_model_ > last_mz_model_) throw Exception::InvalidParameter(__FILE__, __LINE__, __PRETTY_FUNCTION__, "ModelFitter::fit(): charge range tested is not valid; check \"model_type:first\" and \"model_type:last\" ");
// Check charge estimate if charge is not specified by user
#ifdef DEBUG_FEATUREFINDER
std::cout << "Checking charge state from " << first_mz_model_ << " to " << last_mz_model_ << std::endl;
#endif
// ** Projection
doProjectionDim_(RT, index_set, rt_input_data_);
doProjectionDim_(MZ, index_set, mz_input_data_);
// Fit rt model
InterpolationModel * model_rt = 0;
quality_rt_ = fitRT_(model_rt);
model2D_.setModel(RT, model_rt); // Set model in 2D-model
FeatureMap<Feature> feature_collection;
for (ChargeType charge = first_mz_model_; charge <= last_mz_model_; ++charge)
{
Feature f;
try
{
// "reset" model2D!!
model2D_.setScale(1.);
// TODO: intensity scaling should use a more robust estimator (rather than comparing max of data vs. model)
// Compute model with the best correlation
// result is in model2D_
QualityType max_quality = fitMZLoop_(index_set, charge);
// find peak with highest predicted intensity to use as cutoff
IntensityType model_max = 0;
for (IndexSetIter it = index_set.begin(); it != index_set.end(); ++it)
{
IntensityType model_int = model2D_.getIntensity(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it)));
if (model_int > model_max) model_max = model_int;
}
model2D_.setCutOff(model_max * Real(this->param_.getValue("intensity_cutoff_factor")));
// Cutoff low intensities wrt to model maximum -> cutoff independent of scaling
IndexSet model_set;
for (IndexSetIter it = index_set.begin(); it != index_set.end(); ++it)
{
if (model2D_.isContained(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it))))
{
model_set.insert(*it);
}
}
// Print number of selected peaks after cutoff
#ifdef DEBUG_FEATUREFINDER
std::cout << " Selected " << model_set.size() << " from " << index_set.size() << " peaks.\n";
#endif
// Calculate intensity scaling
IntensityType model_sum = 0;
//IntensityType data_sum = 0;
IntensityType data_max = 0;
for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
{
IntensityType model_int = model2D_.getIntensity(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it)));
model_sum += model_int;
//data_sum += this->getPeakIntensity( *it );
if (this->getPeakIntensity(*it) > data_max) data_max = this->getPeakIntensity(*it);
}
if (model_sum == 0)
{
throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-ZeroSum", "Skipping feature, model_sum zero.");
}
//std::cout << "data_max: " << data_max << " model_max: " << model_max << " model2dscale: " << (data_max / model_max) << std::endl;
model2D_.setScale(data_max / model_max); // use max quotient instead of sum quotient
//std::cout << model2D_.getParameters() << std::endl;
// Build Feature
// The feature coordinate in rt dimension is given
// by the centroid of the rt model whereas the coordinate
// in mz dimension is equal to the monoisotopic peak.
f.setModelDescription(ModelDescription<2>(&model2D_));
f.setOverallQuality(max_quality);
f.setRT(static_cast<InterpolationModel *>(model2D_.getModel(RT))->getCenter());
f.setMZ(static_cast<InterpolationModel *>(model2D_.getModel(MZ))->getCenter());
// set and check convex hull whether m/z is contained or not
this->addConvexHull(model_set, f);
if (!f.encloses(f.getRT(), f.getMZ())) f.setMZ(f.getConvexHull().getBoundingBox().minY());
// feature charge ...
// if we used a simple Gaussian model to fit the feature, we can't say anything about
// its charge state. The value 0 indicates that charge state is undetermined.
if (model2D_.getModel(MZ)->getName() == "LmaIsotopeModel")
{
f.setCharge(static_cast<LmaIsotopeModel *>(model2D_.getModel(MZ))->getCharge());
}
else if (model2D_.getModel(MZ)->getName() == "IsotopeModel")
{
f.setCharge(static_cast<IsotopeModel *>(model2D_.getModel(MZ))->getCharge());
}
else if (model2D_.getModel(MZ)->getName() == "ExtendedIsotopeModel")
{
f.setCharge(static_cast<ExtendedIsotopeModel *>(model2D_.getModel(MZ))->getCharge());
}
else
{
f.setCharge(0);
}
// feature intensity
Int const intensity_choice = this->param_.getValue("feature_intensity_sum");
IntensityType feature_intensity = 0.0;
if (intensity_choice == 1)
{
// intensity of the feature is the sum of all included data points
for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
{
feature_intensity += this->getPeakIntensity(*it);
}
}
else
{
// feature intensity is the maximum intensity of all peaks
for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
{
if (this->getPeakIntensity(*it) > feature_intensity)
{
feature_intensity = this->getPeakIntensity(*it);
}
}
}
// set intensity
f.setIntensity(feature_intensity);
// set quality (1D)
f.setQuality(RT, quality_rt_);
f.setQuality(MZ, quality_mz_);
//std::cout << "QA: " << f.getOverallQuality() << " qMZ: " << f.getQuality(1) << " charge: " << f.getCharge() << " stdev: " << f.getModelDescription().getParam().getValue("MZ:isotope:stdev")<< std::endl;
#ifdef DEBUG_FEATUREFINDER
// debug output
if (this->param_.getValue("fit_algorithm") != "wavelet")
{
std::cout << "Feature " << counter_ << ": (" << f.getRT() << "," << f.getMZ() << ") Qual.: " << max_quality << std::endl;
}
// Save meta data in feature for TOPPView
f.setMetaValue(3, String(counter_));
std::cout << "Feature charge: " << f.getCharge() << std::endl;
std::cout << "Feature quality in mz: " << f.getQuality(MZ) << std::endl;
// write debug output
CoordinateType rt = f.getRT();
CoordinateType mz = f.getMZ();
// write feature model
String fname = String("model") + counter_ + "_" + rt + "_" + mz;
std::ofstream file(fname.c_str());
for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
{
DPosition<2> pos = DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it));
if (model2D_.isContained(pos))
{
file << pos[RT] << " " << pos[MZ] << " " << model2D_.getIntensity(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it))) << "\n";
}
}
file.close();
// wrote peaks remaining after model fit
fname = String("feature") + counter_ + "_" + rt + "_" + mz;
std::ofstream file2(fname.c_str());
for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
{
DPosition<2> pos = DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it));
if (model2D_.isContained(pos))
{
file2 << pos[RT] << " " << pos[MZ] << " " << this->getPeakIntensity(*it) << "\n";
}
}
file2.close();
// Count features
++counter_;
#endif
feature_collection.push_back(f);
} // ! try
catch (Exception::UnableToFit & /*e*/)
{
//std::cout << "CAUGHT!! " << e.getName() << " " << e.getMessage() << std::endl;
}
}
if (feature_collection.empty())
{
String mess = String("Skipping feature, nothing in the feature collection.");
throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-EmptyFeatureCollection", mess.c_str());
}
QualityType best_quality = -std::numeric_limits<QualityType>::max();
// find best feature
std::size_t best_idx = 0;
for (std::size_t idx = 0; idx < feature_collection.size(); ++idx)
{
if (best_quality < feature_collection[idx].getOverallQuality())
{
best_quality = feature_collection[idx].getOverallQuality();
best_idx = idx;
}
}
Feature best_feature = feature_collection[best_idx];
// check some more conditions
// not enough peaks left for feature
// fit has too low quality or fit was not possible i.e. because of zero stdev
if (best_feature.getOverallQuality() < (Real) (this->param_.getValue("quality:minimum")))
{
String mess = String("Skipping feature, correlation too small: ") + best_feature.getOverallQuality();
throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-Correlation", mess.c_str());
}
// free unused peaks for best feature
IndexSet model_set;
ProductModel<2> * best_model = static_cast<ProductModel<2> *>(best_feature.getModelDescription().createModel());
for (IndexSetIter it = index_set.begin(); it != index_set.end(); ++it)
{
if (best_model->isContained(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it))))
{
model_set.insert(*it);
}
else
{
this->ff_->getPeakFlag(*it) = UNUSED;
}
}
delete best_model;
if (model_set.size() < (UInt) (this->param_.getValue("min_num_peaks:final")))
{
throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-FinalSet", String("Skipping feature, IndexSet size after cutoff too small: ") + model_set.size());
}
// add all but the best feature to the suboptimal ones
for (std::size_t idx = 0; idx < feature_collection.size(); ++idx)
{
if (idx == best_idx) continue;
best_feature.getSubordinates().push_back(feature_collection[idx]);
}
// return "best" feature
return best_feature;
}
protected:
virtual void updateMembers_()
{
algorithm_ = this->param_.getValue("fit_algorithm");
max_iteration_ = this->param_.getValue("max_iteration");
deltaAbsError_ = this->param_.getValue("deltaAbsError");
deltaRelError_ = this->param_.getValue("deltaRelError");
tolerance_stdev_box_ = this->param_.getValue("tolerance_stdev_bounding_box");
max_isotope_ = this->param_.getValue("isotope_model:isotope:maximum");
interpolation_step_mz_ = this->param_.getValue("mz:interpolation_step");
interpolation_step_rt_ = this->param_.getValue("rt:interpolation_step");
iso_stdev_first_ = this->param_.getValue("isotope_model:stdev:first");
iso_stdev_last_ = this->param_.getValue("isotope_model:stdev:last");
iso_stdev_stepsize_ = this->param_.getValue("isotope_model:stdev:step");
first_mz_model_ = (Int) this->param_.getValue("mz:model_type:first");
last_mz_model_ = (Int) this->param_.getValue("mz:model_type:last");
}
/// main fit loop
QualityType fitMZLoop_(const ChargedIndexSet & set, const ChargeType & charge)
{
// Fit mz model ... test different charge states and stdevs
QualityType max_quality_mz = -std::numeric_limits<QualityType>::max();
InterpolationModel * best_model_mz = 0;
for (Real stdev = iso_stdev_first_; stdev <= iso_stdev_last_; stdev += iso_stdev_stepsize_)
{
isotope_stdev_ = stdev;
InterpolationModel * model_mz = 0;
quality_mz_ = fitMZ_(model_mz, charge);
if (quality_mz_ > max_quality_mz)
{
max_quality_mz = quality_mz_;
if (best_model_mz) delete best_model_mz;
best_model_mz = model_mz;
}
else
{
delete model_mz;
}
}
model2D_.setModel(MZ, best_model_mz); // Set model in 2D-model
quality_mz_ = max_quality_mz;
// return overall quality
return evaluate_(set);
}
/// evaluate 2d-model
QualityType evaluate_(const IndexSet & set) const
{
QualityType quality = 0.0;
// Calculate the pearson correlation coefficient for the values in [begin_a, end_a) and [begin_b, end_b)
if (algorithm_ != "")
{
std::vector<Real> real_data;
real_data.reserve(set.size());
std::vector<Real> model_data;
model_data.reserve(set.size());
for (IndexSet::const_iterator it = set.begin(); it != set.end(); ++it)
{
real_data.push_back(this->getPeakIntensity(*it));
model_data.push_back(model2D_.getIntensity(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it))));
}
if (this->param_.getValue("quality:type") == "RankCorrelation")
{
quality = Math::rankCorrelationCoefficient(real_data.begin(), real_data.end(), model_data.begin(), model_data.end());
}
else quality = Math::pearsonCorrelationCoefficient(real_data.begin(), real_data.end(), model_data.begin(), model_data.end());
}
if (boost::math::isnan(quality)) quality = -1.0;
return quality;
}
/// 1d fit in RT
QualityType fitRT_(InterpolationModel * & model) const
{
QualityType quality;
Param param;
Fitter1D * fitter;
if (algorithm_ == "simplest") // Fit with BiGauss
{
param.setValue("tolerance_stdev_bounding_box", tolerance_stdev_box_);
param.setValue("statistics:mean", rt_stat_.mean());
param.setValue("statistics:variance", rt_stat_.variance());
param.setValue("statistics:variance1", rt_stat_.variance1());
param.setValue("statistics:variance2", rt_stat_.variance2());
param.setValue("interpolation_step", interpolation_step_rt_);
fitter = Factory<Fitter1D>::create("BiGaussFitter1D");
}
else // Fit with EMG (LM optimization)
{
param.setValue("tolerance_stdev_bounding_box", tolerance_stdev_box_);
param.setValue("statistics:mean", rt_stat_.mean());
param.setValue("statistics:variance", rt_stat_.variance());
param.setValue("interpolation_step", interpolation_step_rt_);
param.setValue("max_iteration", max_iteration_);
param.setValue("deltaAbsError", deltaAbsError_);
param.setValue("deltaRelError", deltaRelError_);
fitter = Factory<Fitter1D>::create("EmgFitter1D");
}
// Set parameter for fitter
fitter->setParameters(param);
// Construct model for rt
quality = fitter->fit1d(rt_input_data_, model);
// Check quality
if (boost::math::isnan(quality)) quality = -1.0;
delete(fitter);
return quality;
}
/// 1d fit in MZ
QualityType fitMZ_(InterpolationModel * & model, const ChargeType & charge) const
{
QualityType quality;
Param param;
Fitter1D * fitter;
param.setValue("tolerance_stdev_bounding_box", tolerance_stdev_box_);
param.setValue("statistics:mean", mz_stat_.mean());
param.setValue("statistics:variance", mz_stat_.variance());
param.setValue("interpolation_step", interpolation_step_mz_);
if (monoisotopic_mz_ != 0) // monoisotopic mz is known
{
param.setValue("statistics:mean", monoisotopic_mz_);
}
if (charge != 0) // charge is not zero
{
param.setValue("charge", charge);
param.setValue("isotope:stdev", isotope_stdev_);
param.setValue("isotope:maximum", max_isotope_);
fitter = Factory<Fitter1D>::create("IsotopeFitter1D");
}
else // charge is zero
{
if (algorithm_ == "simplest") // Fit with GaussModel
{
param.setValue("charge", charge);
param.setValue("isotope:stdev", isotope_stdev_);
param.setValue("isotope:maximum", max_isotope_);
fitter = Factory<Fitter1D>::create("IsotopeFitter1D");
}
else // Fit with LmaGaussModel
{
param.setValue("max_iteration", max_iteration_);
param.setValue("deltaAbsError", deltaAbsError_);
param.setValue("deltaRelError", deltaRelError_);
fitter = Factory<Fitter1D>::create("LmaGaussFitter1D");
}
}
// Set parameter for fitter
fitter->setParameters(param);
// Construct model for mz
quality = fitter->fit1d(mz_input_data_, model);
//std::cout << "model after fitting: " << model->getParameters() << std::endl << std::endl;
// Check quality
if (boost::math::isnan(quality)) quality = -1.0;
delete(fitter);
return quality;
}
/// Project the raw data into 1-dim array
void doProjectionDim_(const Int dim, const ChargedIndexSet & index_set, RawDataArrayType & set) const
{
if (algorithm_ != "")
{
std::map<CoordinateType, CoordinateType> data_map;
if (dim == MZ)
{
for (IndexSet::const_iterator it = index_set.begin(); it != index_set.end(); ++it)
{
data_map[this->getPeakMz(*it)] += this->getPeakIntensity(*it);
}
}
else
{
for (IndexSet::const_iterator it = index_set.begin(); it != index_set.end(); ++it)
{
data_map[this->getPeakRt(*it)] += this->getPeakIntensity(*it);
}
}
// Copy the raw data into set
set.resize(data_map.size());
std::map<CoordinateType, CoordinateType>::iterator it;
UInt i = 0;
for (it = data_map.begin(); it != data_map.end(); ++it, ++i)
{
set[i].setPosition((*it).first);
set[i].setIntensity((*it).second);
}
}
}
/// 2D model
ProductModel<2> model2D_;
/// statistics for mz
Math::BasicStatistics<> mz_stat_;
/// statistics for rt
Math::AsymmetricStatistics<> rt_stat_;
/// mz raw data
RawDataArrayType mz_input_data_;
/// rt raw data
RawDataArrayType rt_input_data_;
/// tolerance used for bounding box
CoordinateType tolerance_stdev_box_;
/// monoistopic mass
CoordinateType monoisotopic_mz_;
#ifdef DEBUG_FEATUREFINDER
/// counts features (used for debug output only)
UInt counter_;
#endif
/// interpolation step size (in m/z)
CoordinateType interpolation_step_mz_;
/// interpolation step size (in retention time)
CoordinateType interpolation_step_rt_;
/// maximum isotopic rank to be considered
Int max_isotope_;
/// first stdev
CoordinateType iso_stdev_first_;
/// last stdev
CoordinateType iso_stdev_last_;
/// step size
CoordinateType iso_stdev_stepsize_;
/// first mz model (0=Gaussian, 1....n = charge )
Int first_mz_model_;
/// last mz model
Int last_mz_model_;
/// isotope stdev
CoordinateType isotope_stdev_;
/// algorithm
String algorithm_;
/// Maximum number of iterations
Int max_iteration_;
/** Test for the convergence of the sequence by comparing the last iteration step dx with the absolute error epsabs and relative error epsrel to the current position x */
/// Absolute error
CoordinateType deltaAbsError_;
/// Relative error
CoordinateType deltaRelError_;
/// statistics
Math::BasicStatistics<> basic_stat_;
/// fit quality in RT dimension
QualityType quality_rt_;
/// fit quality in MZ dimension
QualityType quality_mz_;
private:
/// Not implemented
ModelFitter();
/// Not implemented
ModelFitter & operator=(const ModelFitter &);
/// Not implemented
ModelFitter(const ModelFitter &);
};
}
#endif // OPENMS_TRANSFORMATIONS_FEATUREFINDER_MODELFITTER_H
|