This file is indexed.

/usr/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ModelFitter.h is in libopenms-dev 1.11.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
// --------------------------------------------------------------------------
//                   OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of any author or any participating institution
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Clemens Groepl $
// $Authors: $
// --------------------------------------------------------------------------


#ifndef OPENMS_TRANSFORMATIONS_FEATUREFINDER_MODELFITTER_H
#define OPENMS_TRANSFORMATIONS_FEATUREFINDER_MODELFITTER_H

#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeaFiModule.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/ProductModel.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/LmaIsotopeModel.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/Fitter1D.h>
#include <OpenMS/MATH/STATISTICS/AsymmetricStatistics.h>
#include <OpenMS/MATH/STATISTICS/StatisticFunctions.h>
#include <OpenMS/CONCEPT/Factory.h>

#include <boost/math/special_functions/fpclassify.hpp>

#include <iostream>
#include <fstream>
#include <numeric>
#include <cmath>
#include <vector>
#include <set>

namespace OpenMS
{

  /**
  @brief Tests a group of data points in an LC-MS map for goodness-of-fit with a 2D averagine model.

  The ModelFitter class uses a gaussian or isotope model in m/z and bigauss,
  lmagauss (bigauss with Levenberg-Marquardt) or emg (exponentially modified
  Gaussian with lma optimized parameters) in retention time.

  For the isotope model, we test different charge states and peaks widths.

@todo Fix problem with other peak types than Peak1D and enable the respective tests for FeatureFinderAlgorithmSimple, FeatureFinderAlgorithmSimplest, FeatureFinderAlgorithmWavelet (Clemens)

  @htmlinclude OpenMS_ModelFitter.parameters

  @ingroup FeatureFinder
  */
  template <class PeakType, class FeatureType>
  class ModelFitter :
    public FeaFiModule<PeakType, FeatureType>,
    public FeatureFinderDefs
  {
public:

    /// IndexSet iterator
    typedef IndexSet::const_iterator IndexSetIter;
    /// Quality of a feature
    typedef Feature::QualityType QualityType;
    /// Single coordinate
    typedef Feature::CoordinateType CoordinateType;
    /// Single intensity
    typedef Feature::IntensityType IntensityType;
    /// Isotope charge
    typedef Feature::ChargeType ChargeType;
    /// FeaFiModule
    typedef FeaFiModule<PeakType, FeatureType> Base;
    /// Raw data container type using for the temporary storage of the input data
    typedef std::vector<PeakType> RawDataArrayType;

    enum
    {
      RT = Peak2D::RT,
      MZ = Peak2D::MZ
    };

    /// Constructor
    ModelFitter(const MSExperiment<PeakType> * map, FeatureMap<FeatureType> * features, FeatureFinder * ff) :
      Base(map, features, ff),
      model2D_(),
      mz_stat_(),
      rt_stat_(),
      monoisotopic_mz_(0),
#ifdef DEBUG_FEATUREFINDER
      counter_(1),
#endif
      iso_stdev_first_(0),
      iso_stdev_last_(0),
      iso_stdev_stepsize_(0),
      first_mz_model_(0),
      last_mz_model_(0),
      quality_rt_(0),
      quality_mz_(0)
    {
      this->setName("ModelFitter");

      this->defaults_.setValue("fit_algorithm", "simple", "Fitting algorithm type (internal parameter).", StringList::create("advanced"));
      std::vector<String> fit_opts;
      fit_opts.push_back("simple");
      fit_opts.push_back("simplest");
      fit_opts.push_back("wavelet");
      this->defaults_.setValidStrings("fit_algorithm", fit_opts);

      this->defaults_.setValue("max_iteration", 500, "Maximum number of iterations for fitting with Levenberg-Marquardt algorithm.", StringList::create("advanced"));
      this->defaults_.setMinInt("max_iteration", 1);
      this->defaults_.setValue("deltaAbsError", 0.0001, "Absolute error used by the Levenberg-Marquardt algorithm.", StringList::create("advanced"));
      this->defaults_.setMinFloat("deltaAbsError", 0.0);
      this->defaults_.setValue("deltaRelError", 0.0001, "Relative error used by the Levenberg-Marquardt algorithm.", StringList::create("advanced"));
      this->defaults_.setMinFloat("deltaRelError", 0.0);

      this->defaults_.setValue("tolerance_stdev_bounding_box", 3.0f, "Bounding box has range [minimim of data, maximum of data] enlarged by tolerance_stdev_bounding_box times the standard deviation of the data", StringList::create("advanced"));
      this->defaults_.setMinFloat("tolerance_stdev_bounding_box", 0.0);

      this->defaults_.setValue("intensity_cutoff_factor", 0.05f, "Cutoff peaks with a predicted intensity below intensity_cutoff_factor times the maximal intensity of the model");
      this->defaults_.setMinFloat("intensity_cutoff_factor", 0.0);
      this->defaults_.setMaxFloat("intensity_cutoff_factor", 1.0);

      this->defaults_.setValue("feature_intensity_sum", 1, "Determines what is reported as feature intensity.\n1: the sum of peak intensities;\n0: the maximum intensity of all peaks", StringList::create("advanced"));
      this->defaults_.setMinInt("feature_intensity_sum", 0);
      this->defaults_.setMaxInt("feature_intensity_sum", 1);

      this->defaults_.setValue("min_num_peaks:final", 5, "Minimum number of peaks left after cutoff. If smaller, feature will be discarded.");
      this->defaults_.setMinInt("min_num_peaks:final", 1);
      this->defaults_.setValue("min_num_peaks:extended", 10, "Minimum number of peaks after extension. If smaller, feature will be discarded.");
      this->defaults_.setMinInt("min_num_peaks:extended", 1);
      this->defaults_.setSectionDescription("min_num_peaks", "Required number of peaks for a feature.");

      this->defaults_.setValue("rt:interpolation_step", 0.2f, "Step size in seconds used to interpolate model for RT.");
      this->defaults_.setMinFloat("rt:interpolation_step", 0.0);
      this->defaults_.setSectionDescription("rt", "Model settings in RT dimension.");

      this->defaults_.setValue("mz:interpolation_step", 0.03f, "Interpolation step size for m/z.");
      this->defaults_.setMinFloat("mz:interpolation_step", 0.001);
      this->defaults_.setValue("mz:model_type:first", 1, "Numeric id of first m/z model fitted (usually indicating the charge state), 0 = no isotope pattern (fit a single gaussian).");
      this->defaults_.setMinInt("mz:model_type:first", 0);
      this->defaults_.setValue("mz:model_type:last", 4, "Numeric id of last m/z model fitted (usually indicating the charge state), 0 = no isotope pattern (fit a single gaussian).");
      this->defaults_.setMinInt("mz:model_type:last", 0);
      this->defaults_.setSectionDescription("mz", "Model settings in m/z dimension.");

      this->defaults_.setValue("quality:type", "Correlation", "Type of the quality measure used to assess the fit of model vs data.", StringList::create("advanced"));
      std::vector<String> quality_opts;
      quality_opts.push_back("Correlation");
      quality_opts.push_back("RankCorrelation");
      this->defaults_.setValidStrings("quality:type", quality_opts);
      this->defaults_.setValue("quality:minimum", 0.65f, "Minimum quality of fit, features below this threshold are discarded.");
      this->defaults_.setMinFloat("quality:minimum", 0.0);
      this->defaults_.setMaxFloat("quality:minimum", 1.0);
      this->defaults_.setSectionDescription("quality", "Fitting quality settings.");

      this->defaults_.setValue("isotope_model:stdev:first", 0.04f, "First standard deviation to be considered for isotope model.");
      this->defaults_.setMinFloat("isotope_model:stdev:first", 0.0);
      this->defaults_.setValue("isotope_model:stdev:last", 0.12f, "Last standard deviation to be considered for isotope model.");
      this->defaults_.setMinFloat("isotope_model:stdev:last", 0.0);
      this->defaults_.setValue("isotope_model:stdev:step", 0.04f, "Step size for standard deviations considered for isotope model.");
      this->defaults_.setMinFloat("isotope_model:stdev:step", 0.0);
      this->defaults_.setSectionDescription("isotope_model:stdev", "Instrument resolution settings for m/z dimension.");

      this->defaults_.setValue("isotope_model:averagines:C", 0.04443989f, "Number of C atoms per Dalton of the mass.", StringList::create("advanced"));
      this->defaults_.setMinFloat("isotope_model:averagines:C", 0.0);
      this->defaults_.setValue("isotope_model:averagines:H", 0.06981572f, "Number of H atoms per Dalton of the mass.", StringList::create("advanced"));
      this->defaults_.setMinFloat("isotope_model:averagines:H", 0.0);
      this->defaults_.setValue("isotope_model:averagines:N", 0.01221773f, "Number of N atoms per Dalton of the mass.", StringList::create("advanced"));
      this->defaults_.setMinFloat("isotope_model:averagines:N", 0.0);
      this->defaults_.setValue("isotope_model:averagines:O", 0.01329399f, "Number of O atoms per Dalton of the mass.", StringList::create("advanced"));
      this->defaults_.setMinFloat("isotope_model:averagines:O", 0.0);
      this->defaults_.setValue("isotope_model:averagines:S", 0.00037525f, "Number of S atoms per Dalton of the mass.", StringList::create("advanced"));
      this->defaults_.setMinFloat("isotope_model:averagines:S", 0.0);
      this->defaults_.setSectionDescription("isotope_model:averagines", "Averagines are used to approximate the number of atoms (C,H,N,O,S) which a peptide of a given mass contains.");

      this->defaults_.setValue("isotope_model:isotope:trim_right_cutoff", 0.001f, "Cutoff for averagine distribution, trailing isotopes below this relative intensity are not considered.", StringList::create("advanced"));
      this->defaults_.setMinFloat("isotope_model:isotope:trim_right_cutoff", 0.0);
      this->defaults_.setValue("isotope_model:isotope:maximum", 100, "Maximum number of isotopes being used for the IsotopeModel.", StringList::create("advanced"));
      this->defaults_.setMinInt("isotope_model:isotope:maximum", 1);
      this->defaults_.setValue("isotope_model:isotope:distance", 1.000495f, "Distance between consecutive isotopic peaks.", StringList::create("advanced"));
      this->defaults_.setMinFloat("isotope_model:isotope:distance", 0.0);
      this->defaults_.setSectionDescription("isotope_model", "Settings of the isotope model (m/z).");

      this->defaultsToParam_();
    }

    /// Destructor
    virtual ~ModelFitter()
    {
    }

    /** @brief Sets or fixed the monoisotopic m/z at a specific position.
    * @param mz The monoisotopic m/z that occurres in the current data set. */
    void setMonoIsotopicMass(CoordinateType mz)
    {
      monoisotopic_mz_ = mz;
    }

    /**
        @brief Return next feature

        @exception Exception::UnableToFit is thrown if fitting cannot be performed
        @exception Exception::InvalidParameter if first and last charge to test do not define a range (first<=last)
    */
    Feature fit(const ChargedIndexSet & index_set)
    {
      // Test the number of peaks (not enough peaks to fit)
      if (index_set.size() < UInt(this->param_.getValue("min_num_peaks:extended")))
      {
        String mess = String("Skipping feature, IndexSet size too small: ") + index_set.size();
        throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-IndexSet", mess.c_str());
      }

      // Calculate statistics for mz and rt
      mz_stat_.update
      (
        Internal::IntensityIterator<ModelFitter>(index_set.begin(), this),
        Internal::IntensityIterator<ModelFitter>(index_set.end(), this),
        Internal::MzIterator<ModelFitter>(index_set.begin(), this)
      );
      rt_stat_.update
      (
        Internal::IntensityIterator<ModelFitter>(index_set.begin(), this),
        Internal::IntensityIterator<ModelFitter>(index_set.end(), this),
        Internal::RtIterator<ModelFitter>(index_set.begin(), this)
      );

      // set charge
      if (index_set.charge != 0)
      {
        first_mz_model_ = index_set.charge;
        last_mz_model_ = index_set.charge;
      }

      if (first_mz_model_ > last_mz_model_) throw Exception::InvalidParameter(__FILE__, __LINE__, __PRETTY_FUNCTION__, "ModelFitter::fit(): charge range tested is not valid; check \"model_type:first\" and \"model_type:last\" ");

      // Check charge estimate if charge is not specified by user
#ifdef DEBUG_FEATUREFINDER
      std::cout << "Checking charge state from " << first_mz_model_ << " to " << last_mz_model_ << std::endl;
#endif

      // ** Projection
      doProjectionDim_(RT, index_set, rt_input_data_);
      doProjectionDim_(MZ, index_set, mz_input_data_);
      // Fit rt model
      InterpolationModel * model_rt = 0;
      quality_rt_ = fitRT_(model_rt);
      model2D_.setModel(RT, model_rt);          // Set model in 2D-model

      FeatureMap<Feature> feature_collection;

      for (ChargeType charge = first_mz_model_; charge <= last_mz_model_; ++charge)
      {
        Feature f;
        try
        {
          // "reset" model2D!!
          model2D_.setScale(1.);

          // TODO: intensity scaling should use a more robust estimator (rather than comparing max of data vs. model)

          // Compute model with the best correlation
          // result is in model2D_
          QualityType max_quality = fitMZLoop_(index_set, charge);

          // find peak with highest predicted intensity to use as cutoff
          IntensityType model_max = 0;

          for (IndexSetIter it = index_set.begin(); it != index_set.end(); ++it)
          {
            IntensityType model_int = model2D_.getIntensity(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it)));
            if (model_int > model_max) model_max = model_int;
          }
          model2D_.setCutOff(model_max * Real(this->param_.getValue("intensity_cutoff_factor")));

          // Cutoff low intensities wrt to model maximum -> cutoff independent of scaling
          IndexSet model_set;
          for (IndexSetIter it = index_set.begin(); it != index_set.end(); ++it)
          {
            if (model2D_.isContained(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it))))
            {
              model_set.insert(*it);
            }
          }

          // Print number of selected peaks after cutoff
#ifdef DEBUG_FEATUREFINDER
          std::cout << " Selected " << model_set.size() << " from " << index_set.size() << " peaks.\n";
#endif

          // Calculate intensity scaling
          IntensityType model_sum = 0;
          //IntensityType data_sum = 0;
          IntensityType data_max = 0;
          for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
          {
            IntensityType model_int = model2D_.getIntensity(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it)));
            model_sum += model_int;
            //data_sum += this->getPeakIntensity( *it );
            if (this->getPeakIntensity(*it) > data_max) data_max = this->getPeakIntensity(*it);
          }

          if (model_sum == 0)
          {
            throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-ZeroSum", "Skipping feature, model_sum zero.");
          }

          //std::cout << "data_max: " << data_max << " model_max: " <<  model_max << " model2dscale: " << (data_max / model_max) << std::endl;
          model2D_.setScale(data_max / model_max);              // use max quotient instead of sum quotient

          //std::cout << model2D_.getParameters() << std::endl;

          // Build Feature
          // The feature coordinate in rt dimension is given
          // by the centroid of the rt model whereas the coordinate
          // in mz dimension is equal to the monoisotopic peak.
          f.setModelDescription(ModelDescription<2>(&model2D_));
          f.setOverallQuality(max_quality);
          f.setRT(static_cast<InterpolationModel *>(model2D_.getModel(RT))->getCenter());
          f.setMZ(static_cast<InterpolationModel *>(model2D_.getModel(MZ))->getCenter());

          // set and check convex hull whether m/z is contained or not
          this->addConvexHull(model_set, f);
          if (!f.encloses(f.getRT(), f.getMZ())) f.setMZ(f.getConvexHull().getBoundingBox().minY());

          // feature charge ...
          // if we used a simple Gaussian model to fit the feature, we can't say anything about
          // its charge state. The value 0 indicates that charge state is undetermined.
          if (model2D_.getModel(MZ)->getName() == "LmaIsotopeModel")
          {
            f.setCharge(static_cast<LmaIsotopeModel *>(model2D_.getModel(MZ))->getCharge());
          }
          else if (model2D_.getModel(MZ)->getName() == "IsotopeModel")
          {
            f.setCharge(static_cast<IsotopeModel *>(model2D_.getModel(MZ))->getCharge());
          }
          else if (model2D_.getModel(MZ)->getName() == "ExtendedIsotopeModel")
          {
            f.setCharge(static_cast<ExtendedIsotopeModel *>(model2D_.getModel(MZ))->getCharge());
          }
          else
          {
            f.setCharge(0);
          }

          // feature intensity
          Int const intensity_choice = this->param_.getValue("feature_intensity_sum");
          IntensityType feature_intensity = 0.0;
          if (intensity_choice == 1)
          {
            // intensity of the feature is the sum of all included data points
            for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
            {
              feature_intensity += this->getPeakIntensity(*it);
            }
          }
          else
          {
            // feature intensity is the maximum intensity of all peaks
            for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
            {
              if (this->getPeakIntensity(*it) > feature_intensity)
              {
                feature_intensity = this->getPeakIntensity(*it);
              }
            }
          }

          // set intensity
          f.setIntensity(feature_intensity);

          // set quality (1D)
          f.setQuality(RT, quality_rt_);
          f.setQuality(MZ, quality_mz_);

          //std::cout << "QA: " << f.getOverallQuality() << "  qMZ: " << f.getQuality(1) << " charge: " << f.getCharge() << " stdev: " <<  f.getModelDescription().getParam().getValue("MZ:isotope:stdev")<< std::endl;

#ifdef DEBUG_FEATUREFINDER
          // debug output
          if (this->param_.getValue("fit_algorithm") != "wavelet")
          {
            std::cout << "Feature " << counter_ << ": (" << f.getRT()   << "," << f.getMZ() << ") Qual.: "  << max_quality << std::endl;
          }
          // Save meta data in feature for TOPPView
          f.setMetaValue(3, String(counter_));

          std::cout << "Feature charge: " << f.getCharge() << std::endl;
          std::cout << "Feature quality in mz: " << f.getQuality(MZ) << std::endl;

          // write debug output
          CoordinateType rt = f.getRT();
          CoordinateType mz = f.getMZ();

          // write feature model
          String fname = String("model") + counter_ + "_" + rt + "_" + mz;
          std::ofstream file(fname.c_str());
          for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
          {
            DPosition<2> pos = DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it));
            if (model2D_.isContained(pos))
            {
              file << pos[RT] << " " << pos[MZ] << " " << model2D_.getIntensity(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it))) << "\n";
            }
          }
          file.close();

          // wrote peaks remaining after model fit
          fname = String("feature") + counter_ + "_" + rt + "_" + mz;
          std::ofstream file2(fname.c_str());
          for (IndexSetIter it = model_set.begin(); it != model_set.end(); ++it)
          {
            DPosition<2> pos = DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it));
            if (model2D_.isContained(pos))
            {
              file2 << pos[RT] << " " << pos[MZ] << " " << this->getPeakIntensity(*it) << "\n";
            }
          }
          file2.close();

          // Count features
          ++counter_;

#endif

          feature_collection.push_back(f);
        }         // ! try
        catch (Exception::UnableToFit & /*e*/)
        {
          //std::cout << "CAUGHT!! " << e.getName() << "  " << e.getMessage() << std::endl;
        }
      }

      if (feature_collection.empty())
      {
        String mess = String("Skipping feature, nothing in the feature collection.");
        throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-EmptyFeatureCollection", mess.c_str());
      }

      QualityType best_quality = -std::numeric_limits<QualityType>::max();
      // find best feature
      std::size_t best_idx = 0;
      for (std::size_t idx = 0; idx < feature_collection.size(); ++idx)
      {
        if (best_quality < feature_collection[idx].getOverallQuality())
        {
          best_quality = feature_collection[idx].getOverallQuality();
          best_idx = idx;
        }
      }

      Feature best_feature = feature_collection[best_idx];
      // check some more conditions
      // not enough peaks left for feature

      // fit has too low quality or fit was not possible i.e. because of zero stdev
      if (best_feature.getOverallQuality() < (Real) (this->param_.getValue("quality:minimum")))
      {
        String mess = String("Skipping feature, correlation too small: ") + best_feature.getOverallQuality();
        throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-Correlation", mess.c_str());
      }

      // free unused peaks for best feature
      IndexSet model_set;
      ProductModel<2> * best_model = static_cast<ProductModel<2> *>(best_feature.getModelDescription().createModel());
      for (IndexSetIter it = index_set.begin(); it != index_set.end(); ++it)
      {
        if (best_model->isContained(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it))))
        {
          model_set.insert(*it);
        }
        else
        {
          this->ff_->getPeakFlag(*it) = UNUSED;
        }
      }
      delete best_model;
      if (model_set.size() < (UInt) (this->param_.getValue("min_num_peaks:final")))
      {
        throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-FinalSet", String("Skipping feature, IndexSet size after cutoff too small: ") + model_set.size());
      }

      // add all but the best feature to the suboptimal ones
      for (std::size_t idx = 0; idx < feature_collection.size(); ++idx)
      {
        if (idx == best_idx) continue;
        best_feature.getSubordinates().push_back(feature_collection[idx]);
      }

      // return "best" feature
      return best_feature;

    }

protected:

    virtual void updateMembers_()
    {
      algorithm_ = this->param_.getValue("fit_algorithm");

      max_iteration_ = this->param_.getValue("max_iteration");
      deltaAbsError_ = this->param_.getValue("deltaAbsError");
      deltaRelError_ = this->param_.getValue("deltaRelError");

      tolerance_stdev_box_ = this->param_.getValue("tolerance_stdev_bounding_box");
      max_isotope_ = this->param_.getValue("isotope_model:isotope:maximum");

      interpolation_step_mz_ = this->param_.getValue("mz:interpolation_step");
      interpolation_step_rt_ = this->param_.getValue("rt:interpolation_step");

      iso_stdev_first_ = this->param_.getValue("isotope_model:stdev:first");
      iso_stdev_last_ = this->param_.getValue("isotope_model:stdev:last");
      iso_stdev_stepsize_ = this->param_.getValue("isotope_model:stdev:step");

      first_mz_model_ = (Int) this->param_.getValue("mz:model_type:first");
      last_mz_model_ = (Int) this->param_.getValue("mz:model_type:last");
    }

    /// main fit loop
    QualityType fitMZLoop_(const ChargedIndexSet & set, const ChargeType & charge)
    {

      // Fit mz model ... test different charge states and stdevs
      QualityType max_quality_mz = -std::numeric_limits<QualityType>::max();

      InterpolationModel * best_model_mz = 0;
      for (Real stdev = iso_stdev_first_; stdev <= iso_stdev_last_; stdev += iso_stdev_stepsize_)
      {
        isotope_stdev_ = stdev;

        InterpolationModel * model_mz = 0;
        quality_mz_ = fitMZ_(model_mz, charge);


        if (quality_mz_ > max_quality_mz)
        {
          max_quality_mz = quality_mz_;
          if (best_model_mz) delete best_model_mz;
          best_model_mz = model_mz;
        }
        else
        {
          delete model_mz;
        }
      }

      model2D_.setModel(MZ, best_model_mz);                 // Set model in 2D-model

      quality_mz_ = max_quality_mz;

      // return overall quality
      return evaluate_(set);
    }

    /// evaluate 2d-model
    QualityType evaluate_(const IndexSet & set) const
    {
      QualityType quality = 0.0;

      // Calculate the pearson correlation coefficient for the values in [begin_a, end_a) and [begin_b, end_b)
      if (algorithm_ != "")
      {
        std::vector<Real> real_data;
        real_data.reserve(set.size());
        std::vector<Real> model_data;
        model_data.reserve(set.size());

        for (IndexSet::const_iterator it = set.begin(); it != set.end(); ++it)
        {
          real_data.push_back(this->getPeakIntensity(*it));
          model_data.push_back(model2D_.getIntensity(DPosition<2>(this->getPeakRt(*it), this->getPeakMz(*it))));
        }

        if (this->param_.getValue("quality:type") == "RankCorrelation")
        {
          quality = Math::rankCorrelationCoefficient(real_data.begin(), real_data.end(), model_data.begin(), model_data.end());
        }
        else quality = Math::pearsonCorrelationCoefficient(real_data.begin(), real_data.end(), model_data.begin(), model_data.end());
      }

      if (boost::math::isnan(quality)) quality = -1.0;

      return quality;
    }

    /// 1d fit in RT
    QualityType fitRT_(InterpolationModel * & model) const
    {
      QualityType quality;
      Param param;
      Fitter1D * fitter;

      if (algorithm_ == "simplest")     // Fit with BiGauss
      {
        param.setValue("tolerance_stdev_bounding_box", tolerance_stdev_box_);
        param.setValue("statistics:mean", rt_stat_.mean());
        param.setValue("statistics:variance", rt_stat_.variance());
        param.setValue("statistics:variance1", rt_stat_.variance1());
        param.setValue("statistics:variance2", rt_stat_.variance2());
        param.setValue("interpolation_step", interpolation_step_rt_);

        fitter = Factory<Fitter1D>::create("BiGaussFitter1D");
      }
      else       // Fit with EMG (LM optimization)
      {
        param.setValue("tolerance_stdev_bounding_box", tolerance_stdev_box_);
        param.setValue("statistics:mean", rt_stat_.mean());
        param.setValue("statistics:variance", rt_stat_.variance());
        param.setValue("interpolation_step", interpolation_step_rt_);
        param.setValue("max_iteration", max_iteration_);
        param.setValue("deltaAbsError", deltaAbsError_);
        param.setValue("deltaRelError", deltaRelError_);

        fitter = Factory<Fitter1D>::create("EmgFitter1D");
      }

      // Set parameter for fitter
      fitter->setParameters(param);

      // Construct model for rt
      quality = fitter->fit1d(rt_input_data_, model);
      // Check quality
      if (boost::math::isnan(quality)) quality = -1.0;

      delete(fitter);

      return quality;
    }

    /// 1d fit in MZ
    QualityType fitMZ_(InterpolationModel * & model, const ChargeType & charge) const
    {
      QualityType quality;
      Param param;
      Fitter1D * fitter;

      param.setValue("tolerance_stdev_bounding_box", tolerance_stdev_box_);
      param.setValue("statistics:mean", mz_stat_.mean());
      param.setValue("statistics:variance", mz_stat_.variance());
      param.setValue("interpolation_step", interpolation_step_mz_);

      if (monoisotopic_mz_ != 0)         // monoisotopic mz is known
      {
        param.setValue("statistics:mean", monoisotopic_mz_);
      }

      if (charge != 0)       // charge is not zero
      {
        param.setValue("charge", charge);
        param.setValue("isotope:stdev", isotope_stdev_);
        param.setValue("isotope:maximum", max_isotope_);
        fitter = Factory<Fitter1D>::create("IsotopeFitter1D");
      }
      else       // charge is zero
      {
        if (algorithm_ == "simplest")       // Fit with GaussModel
        {
          param.setValue("charge", charge);
          param.setValue("isotope:stdev", isotope_stdev_);
          param.setValue("isotope:maximum", max_isotope_);
          fitter = Factory<Fitter1D>::create("IsotopeFitter1D");
        }
        else         // Fit with LmaGaussModel
        {
          param.setValue("max_iteration", max_iteration_);
          param.setValue("deltaAbsError", deltaAbsError_);
          param.setValue("deltaRelError", deltaRelError_);
          fitter = Factory<Fitter1D>::create("LmaGaussFitter1D");
        }
      }

      // Set parameter for fitter
      fitter->setParameters(param);

      // Construct model for mz
      quality = fitter->fit1d(mz_input_data_, model);

      //std::cout << "model after fitting: " << model->getParameters() << std::endl << std::endl;

      // Check quality
      if (boost::math::isnan(quality)) quality = -1.0;

      delete(fitter);

      return quality;
    }

    /// Project the raw data into 1-dim array
    void doProjectionDim_(const Int dim, const ChargedIndexSet & index_set, RawDataArrayType & set) const
    {

      if (algorithm_ != "")
      {
        std::map<CoordinateType, CoordinateType> data_map;

        if (dim == MZ)
        {
          for (IndexSet::const_iterator it = index_set.begin(); it != index_set.end(); ++it)
          {
            data_map[this->getPeakMz(*it)] += this->getPeakIntensity(*it);
          }
        }
        else
        {
          for (IndexSet::const_iterator it = index_set.begin(); it != index_set.end(); ++it)
          {
            data_map[this->getPeakRt(*it)] += this->getPeakIntensity(*it);
          }
        }

        // Copy the raw data into set
        set.resize(data_map.size());
        std::map<CoordinateType, CoordinateType>::iterator it;
        UInt i = 0;
        for (it = data_map.begin(); it != data_map.end(); ++it, ++i)
        {
          set[i].setPosition((*it).first);
          set[i].setIntensity((*it).second);
        }

      }

    }

    /// 2D model
    ProductModel<2> model2D_;
    /// statistics for mz
    Math::BasicStatistics<> mz_stat_;
    /// statistics for rt
    Math::AsymmetricStatistics<> rt_stat_;
    /// mz raw data
    RawDataArrayType mz_input_data_;
    /// rt raw data
    RawDataArrayType rt_input_data_;
    /// tolerance used for bounding box
    CoordinateType tolerance_stdev_box_;
    /// monoistopic mass
    CoordinateType monoisotopic_mz_;
#ifdef DEBUG_FEATUREFINDER
    /// counts features (used for debug output only)
    UInt counter_;
#endif
    /// interpolation step size (in m/z)
    CoordinateType interpolation_step_mz_;
    /// interpolation step size (in retention time)
    CoordinateType interpolation_step_rt_;
    /// maximum isotopic rank to be considered
    Int max_isotope_;
    /// first stdev
    CoordinateType iso_stdev_first_;
    /// last stdev
    CoordinateType iso_stdev_last_;
    /// step size
    CoordinateType iso_stdev_stepsize_;
    /// first mz model (0=Gaussian, 1....n = charge )
    Int first_mz_model_;
    /// last mz model
    Int last_mz_model_;
    /// isotope stdev
    CoordinateType isotope_stdev_;
    /// algorithm
    String algorithm_;
    /// Maximum number of iterations
    Int max_iteration_;
    /** Test for the convergence of the sequence by comparing the last iteration step dx with the absolute error epsabs and relative error epsrel to the current position x */
    /// Absolute error
    CoordinateType deltaAbsError_;
    /// Relative error
    CoordinateType deltaRelError_;
    /// statistics
    Math::BasicStatistics<> basic_stat_;
    /// fit quality in RT dimension
    QualityType quality_rt_;
    /// fit quality in MZ dimension
    QualityType quality_mz_;

private:

    /// Not implemented
    ModelFitter();
    /// Not implemented
    ModelFitter & operator=(const ModelFitter &);
    /// Not implemented
    ModelFitter(const ModelFitter &);

  };

}

#endif // OPENMS_TRANSFORMATIONS_FEATUREFINDER_MODELFITTER_H