/usr/include/OpenMS/MATH/STATISTICS/StatisticFunctions.h is in libopenms-dev 1.11.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 | // --------------------------------------------------------------------------
// OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of any author or any participating institution
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Clemens Groepl $
// $Authors: Clemens Groepl, Johannes Junker, Mathias Walzer$
// --------------------------------------------------------------------------
#include <numeric>
#include <algorithm>
#include <OpenMS/CONCEPT/Types.h>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/casts.hpp>
#include <boost/function/function_base.hpp>
#ifndef OPENMS_MATH_STATISTICS_STATISTICFUNCTIONS_H
#define OPENMS_MATH_STATISTICS_STATISTICFUNCTIONS_H
namespace OpenMS
{
namespace Math
{
/**
@brief Calculates the sum of a range of values
@ingroup MathFunctionsStatistics
*/
template <typename IteratorType>
static DoubleReal sum(IteratorType begin, IteratorType end)
{
return std::accumulate(begin, end, 0.0);
}
/**
@brief Calculates the mean of a range of values
@exception Exception::InvalidRange is thrown if the range is empty
@ingroup MathFunctionsStatistics
*/
template <typename IteratorType>
static DoubleReal mean(IteratorType begin, IteratorType end)
{
SignedSize size = std::distance(begin, end);
if (size <= 0)
{
throw Exception::InvalidRange(__FILE__, __LINE__, __PRETTY_FUNCTION__);
}
return sum(begin, end) / size;
}
/**
@brief Calculates the median of a range of values
@param begin Start of range
@param end End of range (past-the-end iterator)
@param sorted Is the range already sorted? If not, it will be sorted.
@exception Exception::InvalidRange is thrown if the range is empty
@ingroup MathFunctionsStatistics
*/
template <typename IteratorType>
static DoubleReal median(IteratorType begin, IteratorType end, bool sorted = FALSE)
{
Size size = std::distance(begin, end);
if (size == 0)
{
throw Exception::InvalidRange(__FILE__, __LINE__, __PRETTY_FUNCTION__);
}
if (!sorted)
{
std::sort(begin, end);
}
if (size % 2 == 0) // even size => average two middle values
{
IteratorType it1 = begin;
std::advance(it1, size / 2 - 1);
IteratorType it2 = it1;
std::advance(it2, 1);
return (*it1 + *it2) / 2.0;
}
else
{
IteratorType it = begin;
std::advance(it, (size - 1) / 2);
return *it;
}
}
/**
@brief Calculates the quantile of a range of values
@param begin Start of range
@param end End of range (past-the-end iterator)
@param sorted Is the range already sorted? If not, it will be sorted.
@exception Exception::InvalidRange is thrown if the range is empty or a quantile over 100 is given
@ingroup MathFunctionsStatistics
*/
template <typename IteratorType>
static DoubleReal quantile(IteratorType begin, IteratorType end, UInt quantile, bool sorted = FALSE)
{
Size size = std::distance(begin, end);
if (size == 0)
{
throw Exception::InvalidRange(__FILE__, __LINE__, __PRETTY_FUNCTION__);
}
if (quantile > 100 || quantile < 1) //TODO is 0 quantile a valid request?
{
throw Exception::InvalidRange(__FILE__, __LINE__, __PRETTY_FUNCTION__);
}
int l = floor( (double(quantile) * (double(size) / 100)) + 0.5); // will not be negative, so this is round nearest
if (!sorted)
{
std::sort(begin, end);
}
IteratorType it = begin;
std::advance(it, l - 1);
return *it;
}
/**
@brief Calculates the mean square error for the values in [begin_a, end_a) and [begin_b, end_b)
Calculates the mean square error for the data given by the two iterator ranges.
@exception Exception::InvalidRange is thrown if the iterator ranges are not of the same length or empty.
@ingroup MathFunctionsStatistics
*/
template <typename IteratorType1, typename IteratorType2>
static DoubleReal meanSquareError(IteratorType1 begin_a, IteratorType1 end_a, IteratorType2 begin_b, IteratorType2 end_b)
{
//no data or different lengths
SignedSize dist = std::distance(begin_a, end_a);
if (dist == 0 || dist != std::distance(begin_b, end_b))
{
throw Exception::InvalidRange(__FILE__, __LINE__, __PRETTY_FUNCTION__);
}
DoubleReal error = 0;
while (begin_a != end_a)
{
DoubleReal tmp(*begin_a - *begin_b);
error += tmp * tmp;
++begin_a;
++begin_b;
}
return error / dist;
}
/**
@brief Calculates the classification rate for the values in [begin_a, end_a) and [begin_b, end_b)
Calculates the classification rate for the data given by the two iterator ranges.
@exception Exception::InvalidRange is thrown if the iterator ranges are not of the same length or empty.
@ingroup MathFunctionsStatistics
*/
template <typename IteratorType1, typename IteratorType2>
static DoubleReal classificationRate(IteratorType1 begin_a, IteratorType1 end_a, IteratorType2 begin_b, IteratorType2 end_b)
{
//no data or different lengths
SignedSize dist = std::distance(begin_a, end_a);
if (dist == 0 || dist != std::distance(begin_b, end_b))
{
throw Exception::InvalidRange(__FILE__, __LINE__, __PRETTY_FUNCTION__);
}
DoubleReal correct = (DoubleReal) dist;
while (begin_a != end_a)
{
if ((*begin_a < 0 && *begin_b >= 0) || (*begin_a >= 0 && *begin_b < 0))
{
--correct;
}
++begin_a;
++begin_b;
}
return correct / dist;
}
/**
@brief Calculates the Matthews correlation coefficient for the values in [begin_a, end_a) and [begin_b, end_b)
Calculates the Matthews correlation coefficient for the data given by the two iterator ranges. The values in [begin_a, end_a) have to be the predicted labels and the values in [begin_b, end_b) have to be the real labels.
@exception Exception::InvalidRange is thrown if the iterator ranges are not of the same length or empty.
@ingroup MathFunctionsStatistics
*/
template <typename IteratorType1, typename IteratorType2>
static DoubleReal matthewsCorrelationCoefficient(IteratorType1 begin_a, IteratorType1 end_a, IteratorType2 begin_b, IteratorType2 end_b)
{
//no data or different lengths
Int dist = std::distance(begin_a, end_a);
if (dist == 0 || dist != std::distance(begin_b, end_b))
{
throw Exception::InvalidRange(__FILE__, __LINE__, __PRETTY_FUNCTION__);
}
DoubleReal tp = 0;
DoubleReal fp = 0;
DoubleReal tn = 0;
DoubleReal fn = 0;
while (begin_a != end_a)
{
if (*begin_a < 0 && *begin_b >= 0)
{
++fn;
}
else if (*begin_a < 0 && *begin_b < 0)
{
++tn;
}
else if (*begin_a >= 0 && *begin_b >= 0)
{
++tp;
}
else if (*begin_a >= 0 && *begin_b < 0)
{
++fp;
}
++begin_a;
++begin_b;
}
return (tp * tn - fp * fn) / sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn));
}
/**
@brief Calculates the Pearson correlation coefficient for the values in [begin_a, end_a) and [begin_b, end_b)
Calculates the linear correlation coefficient for the data given by the two iterator ranges.
If one of the ranges contains only the same values 'nan' is returned.
@exception Exception::InvalidRange is thrown if the iterator ranges are not of the same length or empty.
@ingroup MathFunctionsStatistics
*/
template <typename IteratorType1, typename IteratorType2>
static DoubleReal pearsonCorrelationCoefficient(IteratorType1 begin_a, IteratorType1 end_a, IteratorType2 begin_b, IteratorType2 end_b)
{
//no data or different lengths
SignedSize dist = std::distance(begin_a, end_a);
if (dist == 0 || dist != std::distance(begin_b, end_b))
{
throw Exception::InvalidRange(__FILE__, __LINE__, __PRETTY_FUNCTION__);
}
//calculate average
DoubleReal avg_a = std::accumulate(begin_a, end_a, 0.0) / dist;
DoubleReal avg_b = std::accumulate(begin_b, end_b, 0.0) / dist;
DoubleReal numerator = 0;
DoubleReal denominator_a = 0;
DoubleReal denominator_b = 0;
while (begin_a != end_a)
{
DoubleReal temp_a = *begin_a - avg_a;
DoubleReal temp_b = *begin_b - avg_b;
numerator += (temp_a * temp_b);
denominator_a += (temp_a * temp_a);
denominator_b += (temp_b * temp_b);
++begin_a;
++begin_b;
}
return numerator / sqrt(denominator_a * denominator_b);
}
/// Replaces the elements in vector @p w by their ranks
template <typename Value>
static void computeRank(std::vector<Value> & w)
{
Size i = 0; // main index
Size z = 0; // "secondary" index
Value rank = 0;
Size n = (w.size() - 1);
//store original indices for later
std::vector<std::pair<Size, Value> > w_idx;
for (Size j = 0; j < w.size(); ++j)
{
w_idx.push_back(std::make_pair(j, w[j]));
}
//sort
std::sort(w_idx.begin(), w_idx.end(),
boost::lambda::ret<bool>((&boost::lambda::_1->*& std::pair<Size, Value>::second) <
(&boost::lambda::_2->*& std::pair<Size, Value>::second)));
//replace pairs <orig_index, value> in w_idx by pairs <orig_index, rank>
while (i < n)
{
// test for equality with tolerance:
if (fabs(w_idx[i + 1].second - w_idx[i].second) > 0.0000001 * fabs(w_idx[i + 1].second)) // no tie
{
w_idx[i].second = Value(i + 1);
++i;
}
else // tie, replace by mean rank
{
// count number of ties
for (z = i + 1; (z <= n) && fabs(w_idx[z].second - w_idx[i].second) <= 0.0000001 * fabs(w_idx[z].second); ++z)
{
}
// compute mean rank of tie
rank = 0.5 * (i + z + 1);
// replace intensities by rank
for (Size v = i; v <= z - 1; ++v)
{
w_idx[v].second = rank;
}
i = z;
}
}
if (i == n)
w_idx[n].second = Value(n + 1);
//restore original order and replace elements of w with their ranks
for (Size j = 0; j < w.size(); ++j)
{
w[w_idx[j].first] = w_idx[j].second;
}
}
/**
@brief calculates the rank correlation coefficient for the values in [begin_a, end_a) and [begin_b, end_b)
Calculates the rank correlation coefficient for the data given by the two iterator ranges.
If one of the ranges contains only the same values 'nan' is returned.
@exception Exception::InvalidRange is thrown if the iterator ranges are not of the same length or empty.
@ingroup MathFunctionsStatistics
*/
template <typename IteratorType1, typename IteratorType2>
static DoubleReal rankCorrelationCoefficient(IteratorType1 begin_a, IteratorType1 end_a, IteratorType2 begin_b, IteratorType2 end_b)
{
//no data or different lengths
SignedSize dist = std::distance(begin_a, end_a);
if (dist == 0 || dist != std::distance(begin_b, end_b))
{
throw Exception::InvalidRange(__FILE__, __LINE__, __PRETTY_FUNCTION__);
}
// store and sort intensities of model and data
std::vector<DoubleReal> ranks_data;
ranks_data.reserve(dist);
std::vector<DoubleReal> ranks_model;
ranks_model.reserve(dist);
while (begin_a != end_a)
{
ranks_model.push_back(*begin_a);
ranks_data.push_back(*begin_b);
++begin_a;
++begin_b;
}
// replace entries by their ranks
computeRank(ranks_data);
computeRank(ranks_model);
DoubleReal mu = DoubleReal(ranks_data.size() + 1) / 2.; // mean of ranks
// Was the following, but I think the above is more correct ... (Clemens)
// DoubleReal mu = (ranks_data.size() + 1) / 2;
DoubleReal sum_model_data = 0;
DoubleReal sqsum_data = 0;
DoubleReal sqsum_model = 0;
for (Int i = 0; i < dist; ++i)
{
sum_model_data += (ranks_data[i] - mu) * (ranks_model[i] - mu);
sqsum_data += (ranks_data[i] - mu) * (ranks_data[i] - mu);
sqsum_model += (ranks_model[i] - mu) * (ranks_model[i] - mu);
}
// check for division by zero
if (!sqsum_data || !sqsum_model)
return 0;
return sum_model_data / (sqrt(sqsum_data) * sqrt(sqsum_model));
}
} // namespace Math
} // namespace OpenMS
#endif // OPENMS_MATH_STATISTICS_STATISTICFUNCTIONS_H
|