This file is indexed.

/usr/include/OpenMS/COMPARISON/CLUSTERING/HierarchicalClustering.h is in libopenms-dev 1.11.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
// --------------------------------------------------------------------------
//                   OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of any author or any participating institution
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Lars Nilse $
// $Authors: Bastian Blank $
// --------------------------------------------------------------------------

#include <cmath>
#include <limits>
#include <map>
#include <queue>
#include <boost/unordered/unordered_set.hpp>

#include <OpenMS/COMPARISON/CLUSTERING/HashGrid.h>
#include <OpenMS/CONCEPT/Types.h>

#ifndef OPENMS_COMPARISON_CLUSTERING_HIERARCHICALCLUSTERING_H
#define OPENMS_COMPARISON_CLUSTERING_HIERARCHICALCLUSTERING_H

namespace OpenMS
{
  /**
   * @brief Generic 2-dimensional hierarchical clustering with geometric hashing.
   *
   * The input data is saved into a hash grid. The dimension of the hash cells
   * is also the maximum cluster dimension.
   *
   * The clustering is performed on a 5x5 subsets of the hash grid. Only
   * clusters with all points in the inner 3x3 subset are accepted into the
   * output; all others are discarded. This makes sure that all clusters are
   * maximal and can't get larger with points not visible.
   *
   * This clustering only supports centroid linkage. It uses a priority queue
   * to save minimum distances between two subsets (proto-cluster?). No full
   * distance matrix is required.
   *
   * @tparam PointRef Reference associated with every point. Must have a default constructor.
   */
  template <typename PointRef>
  class HierarchicalClustering
  {
public:
    /**
     * @brief Coordinate of a point to be clustered.
     *  @attention To be replaced by a %OpenMS coordinate type.
     */
    typedef DPosition<2, DoubleReal> PointCoordinate;

    /**
     *  @brief Bounding box of cluster.
     *  @attention To be replaced by OpenMS bounding box.
     */
    class BoundingBox :
      public std::pair<PointCoordinate, PointCoordinate>
    {
public:
      BoundingBox(const PointCoordinate & p) :
        std::pair<PointCoordinate, PointCoordinate>(std::make_pair(p, p))
      {}

      BoundingBox(const BoundingBox & b) :
        std::pair<PointCoordinate, PointCoordinate>(b)
      {}

      PointCoordinate size() const
      {
        return this->second - this->first;
      }

      /** @brief Intersection of bounding box. */
      BoundingBox & operator|=(const BoundingBox & rhs)
      {
        typename PointCoordinate::iterator lit;
        typename PointCoordinate::const_iterator rit;

        // Calculate lower bound
        lit = this->first.begin(); rit = rhs.first.begin();
        for (; lit != this->first.end(); ++lit, ++rit) *lit = std::min(*lit, *rit);

        // Calculate upper bound
        lit = this->second.begin(); rit = rhs.second.begin();
        for (; lit != this->second.end(); ++lit, ++rit) *lit = std::max(*lit, *rit);

        return *this;
      }

      /** @brief Intersection of bounding box. */
      BoundingBox operator|(const BoundingBox & rhs) const
      {
        BoundingBox ret(*this);
        ret |= rhs;
        return ret;
      }

      operator PointCoordinate() const
      {
        // (first + second) / 2
        return coordScalarDiv_(this->first + this->second, 2);
      }
    };

    /**
     * @brief Set of points.
     * Describes a cluster on the grid. A point consists of a PointCoordinate and a PointRef.
     */
    class Cluster :
      public boost::unordered_multimap<PointCoordinate, PointRef>
    {
public:
      BoundingBox bbox;

      Cluster(const BoundingBox & bbox) :
        bbox(bbox)
      {}
    };

    /**
     * @brief The hash grid data type.
     */
    typedef HashGrid<Cluster> Grid;

    /**
     * @brief The hash grid.
     *
     * It contains clusters.
     */
    Grid grid;

protected:
    /** @brief Tree node used for clustering. */
    class TreeNode
    {
public:
      const PointCoordinate coord;
      const BoundingBox bbox;
      TreeNode * left, * right;
      UInt points;
      const bool center;
      const PointRef ref;

      TreeNode(const PointCoordinate & coord, const PointRef & ref, bool center) :
        coord(coord), bbox(coord), left(0), right(0), points(1), center(center), ref(ref)
      {}

      TreeNode(const PointCoordinate & coord, const BoundingBox & bbox, TreeNode * left, TreeNode * right) :
        coord(coord), bbox(bbox),
        left(left), right(right),
        points(left->points + right->points),
        center(left->center && right->center),
        ref(PointRef())
      {}
    };

    typedef std::map<typename Grid::CellIndex, std::pair<typename Grid::CellContent *, bool> > ClusterCells;
    typedef boost::unordered_set<TreeNode *> ClusterTrees;

    /** @brief Wrapper class for two trees and the corresponding distance. */
    class TreeDistance
    {
public:
      DoubleReal distance;
      TreeNode * left, * right;

      TreeDistance(const DoubleReal & distance, TreeNode * left, TreeNode * right) :
        distance(distance), left(left), right(right)
      {}

      bool operator>(const TreeDistance & rhs) const
      {
        return distance > rhs.distance;
      }

    };

    /** @brief Priority queue queue used to find minimum distances. */
    typedef std::priority_queue<TreeDistance, std::vector<TreeDistance>, std::greater<TreeDistance> > TreeDistanceQueue;

public:
    /**
     * @brief Constructor
     * @param cluster_dimension Max dimension of cluster
     */
    HierarchicalClustering(const PointCoordinate & cluster_dimension) :
      grid(cluster_dimension)
    {}

    /**
     * @brief Insert new PointCoordinate into grid.
     * @param d PointCoordinate to insert.
     * @param ref Associated caller specified info.
     * @return iterator to inserted cluster.
     */
    typename Grid::cell_iterator insertPoint(const PointCoordinate & d, const PointRef & ref)
    {
      typename Grid::cell_iterator it = insertCluster_(d);
      it->second.insert(std::make_pair(d, ref));
      return it;
    }

    /**
     * @brief Perform clustering of all existing points.
     */
    void cluster()
    {
      // Collect coordinates of all active cells
      std::vector<typename Grid::CellIndex> cells;
      for (typename Grid::const_grid_iterator it = grid.grid_begin(); it != grid.grid_end(); ++it)
        cells.push_back(it->first);
      // Cluster each available cell
      for (typename std::vector<typename Grid::CellIndex>::const_iterator it = cells.begin(); it != cells.end(); ++it)
        clusterIndex_(*it);
    }

protected:
    /**
     * @brief Insert new Cluster into grid.
     * @param p Point to insert.
     * @return iterator to inserted cluster.
     */
    template <class P>
    typename Grid::cell_iterator insertCluster_(const P & p)
    {
      return grid.insert(std::make_pair(p, Cluster(p)));
    }

    /**
     * @brief Perform clustering at given cell index.
     * @param p Cell index.
     */
    void clusterIndex_(const typename Grid::CellIndex & p);

    /**
     * @brief Collect all cells used to cluster at given cell index.
     *
     * This function collects all cells in a 5x5 array.
     *
     * @param cur Cell index.
     * @param cells List of cells to be used.
     */
    void gridCells5x5_(typename Grid::CellIndex cur, ClusterCells & cells);

    /**
     * @brief Collect one cell.
     * @param cur Cell index.
     * @param cells List of cells.
     * @param center Is the given cell in the center.
     * @param ignore_missing Defines if non-existent errors should be ignored.
     */
    void gridCell_(const typename Grid::CellIndex & cur, ClusterCells & cells, bool center = false, bool ignore_missing = true)
    {
      try
      {
        cells.insert(std::make_pair(cur, std::make_pair(&grid.grid_at(cur), center)));
      }
      catch (std::out_of_range &)
      {
        if (!ignore_missing) throw;
      }
    }

    /**
     * @brief Add a new tree to the set of trees and distance queue
     */
    void addTreeDistance_(TreeNode * tree, ClusterTrees & trees, TreeDistanceQueue & dists)
    {
      // Infinity: no valid distance
      DoubleReal dist_min = std::numeric_limits<DoubleReal>::infinity();
      typename ClusterTrees::const_iterator dist_it = trees.end();

      // Generate minimal distance to existing trees
      for (typename ClusterTrees::const_iterator it = trees.begin(); it != trees.end(); ++it)
      {
        if (tree == *it) continue;
        DoubleReal dist = treeDistance_(tree, *it);
        if (dist < dist_min)
        {
          dist_min = dist;
          dist_it = it;
        }
      }

      // Insert distance if valid one found.
      if (dist_it != trees.end()) dists.push(TreeDistance(dist_min, tree, *dist_it));

      // Insert tree.
      trees.insert(tree);
    }

    /**
     * @brief Returns distance of two tree nodes
     * Returns the euclidean distance of the coordinates of the two trees.
     * It checks the size of the bounding box and returns INFINITY if it gets
     * to large.
     */
    DoubleReal treeDistance_(TreeNode * left, TreeNode * right)
    {
      const BoundingBox bbox = left->bbox | right->bbox;
      if (coordElemGreater_(bbox.size(), grid.cell_dimension))
      {
        return std::numeric_limits<DoubleReal>::infinity();
      }

      const PointCoordinate left_scaled = coordElemDiv_(left->coord, grid.cell_dimension);
      const PointCoordinate right_scaled = coordElemDiv_(right->coord, grid.cell_dimension);
      return coordDist_(left_scaled, right_scaled);
    }

    /**
     * @brief Recursively add the points of a finished cluster into the hash grid.
     * All points are saved in the leafs of the tree.
     * @param tree The tree
     * @param cluster The cluster
     */
    void tree2Cluster_(const TreeNode * tree, Cluster & cluster)
    {
      if (tree->left && tree->right)
      {
        tree2Cluster_(tree->left, cluster);
        tree2Cluster_(tree->right, cluster);
      }
      else
      {
        cluster.insert(std::make_pair(tree->bbox.first, tree->ref));
      }
      delete tree->left;
      delete tree->right;
    }

    /**
     * @brief Recursively add the points of an unfinished cluster back to the grid.
     * All points are saved in the leafs of the tree.
     * @param tree The tree
     */
    void tree2Points_(const TreeNode * tree)
    {
      if (tree->left && tree->right)
      {
        tree2Points_(tree->left);
        tree2Points_(tree->right);
      }
      else
      {
        insertPoint(tree->bbox.first, tree->ref);
      }
      delete tree->left;
      delete tree->right;
    }

    static PointCoordinate coordScalarDiv_(const PointCoordinate & lhs, const DoubleReal & rhs)
    {
      PointCoordinate ret;
      typename PointCoordinate::iterator it = ret.begin();
      typename PointCoordinate::const_iterator lit = lhs.begin();
      for (; it != ret.end(); ++it, ++lit) *it = *lit / rhs;
      return ret;
    }

    static PointCoordinate coordElemDiv_(const PointCoordinate & lhs, const PointCoordinate & rhs)
    {
      PointCoordinate ret;
      typename PointCoordinate::iterator it = ret.begin();
      typename PointCoordinate::const_iterator lit = lhs.begin(), rit = rhs.begin();
      for (; it != ret.end(); ++it, ++lit, ++rit) *it = *lit / *rit;
      return ret;
    }

    static bool coordElemGreater_(const PointCoordinate & lhs, const PointCoordinate & rhs)
    {
      typename PointCoordinate::const_iterator lit = lhs.begin(), rit = rhs.begin();
      for (; lit != lhs.end(); ++lit, ++rit)
      {
        if (*lit > *rit) return true;
      }
      return false;
    }

    static DoubleReal coordDist_(const PointCoordinate & lhs, const PointCoordinate & rhs)
    {
      DoubleReal ret = 0;
      PointCoordinate p = lhs - rhs;
      typename PointCoordinate::const_iterator it = p.begin();
      for (; it != p.end(); ++it) ret += std::pow(*it, 2.);
      return std::sqrt(ret);
    }

  };

  template <typename I>
  void HierarchicalClustering<I>::clusterIndex_(const typename Grid::CellIndex & cur)
  {
    ClusterCells cells;
    ClusterTrees trees;
    TreeDistanceQueue dists;

    // Collect all cells we need
    try
    {
      gridCells5x5_(cur, cells);
    }
    catch (std::out_of_range &)
    {
      return;
    }

    // Collect and remove existing points from cells
    for (typename ClusterCells::iterator cell_it = cells.begin(); cell_it != cells.end(); ++cell_it)
    {
      typename Grid::CellContent & cell_cur = *cell_it->second.first;
      const bool & cell_center = cell_it->second.second;

      // Iterate per cluster
      typename Grid::cell_iterator cluster_tmp_it = cell_cur.begin();
      while (cluster_tmp_it != cell_cur.end())
      {
        typename Grid::cell_iterator cluster_it = cluster_tmp_it;
        ++cluster_tmp_it;

        // Check if it is not yet a cluster, aka have only one point
        if (cluster_it->second.size() == 1)
        {
          // Add each point to hash grid
          for (typename Cluster::const_iterator point_it = cluster_it->second.begin(); point_it != cluster_it->second.end(); ++point_it)
          {
            const PointCoordinate & coord = point_it->first;
            TreeNode * tree(new TreeNode(coord, point_it->second, cell_center));
            addTreeDistance_(tree, trees, dists);
          }

          // Remove point from hash grid cell
          cell_cur.erase(cluster_it);
        }
      }
    }

    // Try to join two subsets with minimum distance
    while (!dists.empty())
    {
      const typename TreeDistanceQueue::value_type cur_dist = dists.top();
      TreeNode * tree_left(cur_dist.left), *tree_right(cur_dist.right);
      dists.pop();

      // Check if both trees are not yet used with a smaller distance
      Size count_left = trees.count(tree_left), count_right = trees.count(tree_right);
      if (count_left && count_right)
      {
        trees.erase(tree_left);
        trees.erase(tree_right);

        const BoundingBox bbox = tree_left->bbox | tree_right->bbox;

        // Arithmethic mean: (left * left.points + right * right.points) / (left.points + right.points)
        const PointCoordinate & left = tree_left->coord, & right = tree_right->coord;
        const UInt & left_points = tree_left->points, & right_points = tree_right->points;
        const PointCoordinate coord = coordScalarDiv_(left * left_points + right * right_points, left_points + right_points);

        TreeNode * tree(new TreeNode(coord, bbox, tree_left, tree_right));

        addTreeDistance_(tree, trees, dists);
      }
      // Re-add a distance for the tree not yet used.
      // Otherwise this subset is lost even if it is not yet maximal.
      else if (count_left)
        addTreeDistance_(tree_left, trees, dists);
      else if (count_right)
        addTreeDistance_(tree_right, trees, dists);
    }

    // Add data back to grid
    for (typename ClusterTrees::iterator tree_it = trees.begin(); tree_it != trees.end(); ++tree_it)
    {
      // We got a finished tree with all points in the center, add cluster at centroid
      if ((**tree_it).center)
      {
        Cluster & cluster = insertCluster_((**tree_it).bbox)->second;
        tree2Cluster_(*tree_it, cluster);
      }
      // We got a finished tree but not all points in the center, readd as single points
      else
      {
        tree2Points_(*tree_it);
      }
      delete *tree_it;
    }
  }

  template <typename I>
  void HierarchicalClustering<I>::gridCells5x5_(typename Grid::CellIndex base, ClusterCells & cells)
  {
    // (0, 0)
    gridCell_(base, cells, true, false);

    typename Grid::CellIndex cur = base;
    cur[0] -= 2;
    // (-2, -2)
    cur[1] -= 2; gridCell_(cur, cells);
    // (-2, -1)
    cur[1] += 1; gridCell_(cur, cells);
    // (-2, 0)
    cur[1] += 1; gridCell_(cur, cells);
    // (-2, 1)
    cur[1] += 1; gridCell_(cur, cells);
    // (-2, 2)
    cur[1] += 1; gridCell_(cur, cells);

    cur = base; cur[0] -= 1;
    // (-1, -2)
    cur[1] -= 2; gridCell_(cur, cells);
    // (-1, -1)
    cur[1] += 1; gridCell_(cur, cells, true);
    // (-1, 0)
    cur[1] += 1; gridCell_(cur, cells, true);
    // (-1, 1)
    cur[1] += 1; gridCell_(cur, cells, true);
    // (-1, 2)
    cur[1] += 1; gridCell_(cur, cells);

    cur = base;
    // (0, -2)
    cur[1] -= 2; gridCell_(cur, cells);
    // (0, -1)
    cur[1] += 1; gridCell_(cur, cells, true);
    // (0, 0)
    cur[1] += 1;
    // (0, 1)
    cur[1] += 1; gridCell_(cur, cells, true);
    // (0, 2)
    cur[1] += 1; gridCell_(cur, cells);

    cur = base; cur[0] += 1;
    // (1, -2)
    cur[1] -= 2; gridCell_(cur, cells);
    // (1, -1)
    cur[1] += 1; gridCell_(cur, cells, true);
    // (1, 0)
    cur[1] += 1; gridCell_(cur, cells, true);
    // (1, 1)
    cur[1] += 1; gridCell_(cur, cells, true);
    // (1, 2)
    cur[1] += 1; gridCell_(cur, cells);

    cur = base; cur[0] += 2;
    // (2, -2)
    cur[1] -= 2; gridCell_(cur, cells);
    // (2, -1)
    cur[1] += 1; gridCell_(cur, cells);
    // (2, 0)
    cur[1] += 1; gridCell_(cur, cells);
    // (2, 1)
    cur[1] += 1; gridCell_(cur, cells);
    // (2, 2)
    cur[1] += 1; gridCell_(cur, cells);
  }

}

#endif /* OPENMS_COMPARISON_CLUSTERING_HIERARCHICALCLUSTERING_H */