/usr/include/OpenMS/COMPARISON/CLUSTERING/ClusterHierarchical.h is in libopenms-dev 1.11.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | // --------------------------------------------------------------------------
// OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of any author or any participating institution
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// --------------------------------------------------------------------------
// $Maintainer: Mathias Walzer $
// $Authors: $
// --------------------------------------------------------------------------
//
#ifndef OPENMS_COMPARISON_CLUSTERING_CLUSTERHIERARCHICAL_H
#define OPENMS_COMPARISON_CLUSTERING_CLUSTERHIERARCHICAL_H
#include <OpenMS/KERNEL/StandardTypes.h>
#include <OpenMS/DATASTRUCTURES/DistanceMatrix.h>
#include <OpenMS/COMPARISON/CLUSTERING/ClusterFunctor.h>
#include <OpenMS/COMPARISON/CLUSTERING/ClusterAnalyzer.h>
#include <OpenMS/COMPARISON/SPECTRA/PeakSpectrumCompareFunctor.h>
#include <OpenMS/COMPARISON/SPECTRA/BinnedSpectrum.h>
#include <OpenMS/COMPARISON/SPECTRA/BinnedSpectrumCompareFunctor.h>
#include <OpenMS/CONCEPT/Exception.h>
#include <vector>
namespace OpenMS
{
/**
@brief Hierarchical clustering with generic clustering functions
ClusterHierarchical clusters objects with corresponding distancemethod and clusteringmethod.
@ingroup SpectraClustering
*/
class OPENMS_DLLAPI ClusterHierarchical
{
private:
/// the threshold given to the ClusterFunctor
double threshold_;
public:
/// default constructor
ClusterHierarchical() :
threshold_(1.0)
{
}
/// copy constructor
ClusterHierarchical(const ClusterHierarchical & source) :
threshold_(source.threshold_)
{
}
/// destructor
virtual ~ClusterHierarchical()
{
}
/**
@brief Clustering function
Conducts the SimilarityComparator with a ClusterFunctor an produces a clustering.
Will create a DistanceMatrix if not yet created and start the clustering up to the given ClusterHierarchical::threshold_ used for the ClusterFunctor.
The type of the objects to be clustered has to be the first template argument, the
similarity functor applicable to this type must be the second template argument, e.g.
for @ref PeakSpectrum with a @ref PeakSpectrumCompareFunctor.
The similarity functor must provide the similarity calculation with the ()-operator and
yield normalized values in range of [0,1] for the type of < Data >.
@param data vector of objects to be clustered
@param comparator similarity functor fitting for types in data
@param clusterer a clustermethod implementation, baseclass ClusterFunctor
@param cluster_tree the vector that will hold the BinaryTreeNodes representing the clustering (for further investigation with the ClusterAnalyzer methods)
@param original_distance the DistanceMatrix holding the pairwise distances of the elements in @p data, will be made newly if given size does not fit to the number of elements given in @ data
@see ClusterFunctor, BinaryTreeNode, ClusterAnalyzer
*/
template <typename Data, typename SimilarityComparator>
void cluster(std::vector<Data> & data, const SimilarityComparator & comparator, const ClusterFunctor & clusterer, std::vector<BinaryTreeNode> & cluster_tree, DistanceMatrix<Real> & original_distance)
{
if (original_distance.dimensionsize() != data.size())
{
//create distancematrix for data with comparator
original_distance.clear();
original_distance.resize(data.size(), 1);
for (Size i = 0; i < data.size(); i++)
{
for (Size j = 0; j < i; j++)
{
//distance value is 1-similarity value, since similarity is in range of [0,1]
original_distance.setValueQuick(i, j, 1 - comparator(data[i], data[j]));
}
}
}
//~ std::cout << "done" << std::endl; //maybe progress handler?
// create clustering with ClusterMethod, DistanceMatrix and Data
clusterer(original_distance, cluster_tree, threshold_);
}
/**
@brief clustering function for binned PeakSpectrum
A version of the clustering function for PeakSpectra employing binned similarity methods. From the given PeakSpectrum BinnedSpectrum are generated, so the similarity functor @see BinnedSpectrumCompareFunctor can be applied.
@param data vector of @ref PeakSpectrum s to be clustered
@param comparator a BinnedSpectrumCompareFunctor
@param sz the desired binsize for the @ref BinnedSpectrum s
@param sp the desired binspread for the @ref BinnedSpectrum s
@param clusterer a clustermethod implementation, baseclass ClusterFunctor
@param cluster_tree the vector that will hold the BinaryTreeNodes representing the clustering (for further investigation with the ClusterAnalyzer methods)
@param original_distance the DistanceMatrix holding the pairwise distances of the elements in @p data, will be made newly if given size does not fit to the number of elements given in @p data
@see ClusterFunctor, BinaryTreeNode, ClusterAnalyzer, BinnedSpectrum, BinnedSpectrumCompareFunctor
@ingroup SpectraClustering
*/
void cluster(std::vector<PeakSpectrum> & data, const BinnedSpectrumCompareFunctor & comparator, double sz, UInt sp, const ClusterFunctor & clusterer, std::vector<BinaryTreeNode> & cluster_tree, DistanceMatrix<Real> & original_distance)
{
std::vector<BinnedSpectrum> binned_data;
binned_data.reserve(data.size());
//transform each PeakSpectrum to a corresponding BinnedSpectrum with given settings of size and spread
for (Size i = 0; i < data.size(); i++)
{
//double sz(2), UInt sp(1);
binned_data.push_back(BinnedSpectrum(sz, sp, data[i]));
}
//create distancematrix for data with comparator
original_distance.clear();
original_distance.resize(data.size(), 1);
for (Size i = 0; i < binned_data.size(); i++)
{
for (Size j = 0; j < i; j++)
{
//distance value is 1-similarity value, since similarity is in range of [0,1]
original_distance.setValue(i, j, 1 - comparator(binned_data[i], binned_data[j]));
}
}
// create Clustering with ClusterMethod, DistanceMatrix and Data
clusterer(original_distance, cluster_tree, threshold_);
}
/// get the threshold
double getThreshold()
{
return threshold_;
}
/// set the threshold (in terms of distance)
/// The default is 1, i.e. only at similarity 0 the clustering stops.
/// Warning: clustering is not supported by all methods yet (e.g. SingleLinkage does ignore it).
void setThreshold(double x)
{
threshold_ = x;
}
};
/** @brief Exception thrown if clustering is attempted without a normalized compare functor
due to similarity - distance conversions that are mandatory in some context, compare functors
must return values normalized in the range [0,1] to ensure a clean conversion
*/
class OPENMS_DLLAPI UnnormalizedComparator :
public Exception::BaseException
{
public:
UnnormalizedComparator(const char * file, int line, const char * function, const char * message
= "Clustering with unnormalized similarity measurement requested, normalized is mandatory") throw();
virtual ~UnnormalizedComparator() throw();
};
}
#endif //OPENMS_COMPARISON_CLUSTERING_CLUSTERHIERARCHICAL_H
|