This file is indexed.

/usr/include/OGRE/OgreStaticGeometry.h is in libogre-1.8-dev 1.8.0+dfsg1-7+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2012 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __StaticGeometry_H__
#define __StaticGeometry_H__

#include "OgrePrerequisites.h"
#include "OgreMovableObject.h"
#include "OgreRenderable.h"
#include "OgreMesh.h"
#include "OgreLodStrategy.h"

namespace Ogre {

	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Scene
	*  @{
	*/
	/** Pre-transforms and batches up meshes for efficient use as static
		geometry in a scene.
	@remarks
		Modern graphics cards (GPUs) prefer to receive geometry in large
		batches. It is orders of magnitude faster to render 10 batches
		of 10,000 triangles than it is to render 10,000 batches of 10 
		triangles, even though both result in the same number of on-screen
		triangles.
	@par
		Therefore it is important when you are rendering a lot of geometry to 
		batch things up into as few rendering calls as possible. This
		class allows you to build a batched object from a series of entities 
		in order to benefit from this behaviour.
		Batching has implications of it's own though:
		@li Batched geometry cannot be subdivided; that means that the whole
			group will be displayed, or none of it will. This obivously has
			culling issues.
		@li A single world transform must apply to the entire batch. Therefore
			once you have batched things, you can't move them around relative to
			each other. That's why this class is most useful when dealing with 
			static geometry (hence the name). In addition, geometry is 
			effectively duplicated, so if you add 3 entities based on the same 
			mesh in different positions, they will use 3 times the geometry 
			space than the movable version (which re-uses the same geometry). 
			So you trade memory	and flexibility of movement for pure speed when
			using this class.
		@li A single material must apply for each batch. In fact this class 
			allows you to use multiple materials, but you should be aware that 
			internally this means that there is one batch per material. 
			Therefore you won't gain as much benefit from the batching if you 
			use many different materials; try to keep the number down.
	@par
		In order to retain some sort of culling, this class will batch up 
		meshes in localised regions. The size and shape of these blocks is
		controlled by the SceneManager which constructs this object, since it
		makes sense to batch things up in the most appropriate way given the 
		existing partitioning of the scene. 
	@par
		The LOD settings of both the Mesh and the Materials used in 
		constructing this static geometry will be respected. This means that 
		if you use meshes/materials which have LOD, batches in the distance 
		will have a lower polygon count or material detail to those in the 
		foreground. Since each mesh might have different LOD distances, during 
		build the furthest distance at each LOD level from all meshes  
		in that region is used. This means all the LOD levels change at the 
		same time, but at the furthest distance of any of them (so quality is 
		not degraded). Be aware that using Mesh LOD in this class will 
		further increase the memory required. Only generated LOD
		is supported for meshes.
	@par
		There are 2 ways you can add geometry to this class; you can add
		Entity objects directly with predetermined positions, scales and 
		orientations, or you can add an entire SceneNode and it's subtree, 
		including all the objects attached to it. Once you've added everything
		you need to, you have to call build() the fix the geometry in place. 
	@note
		This class is not a replacement for world geometry (@see 
		SceneManager::setWorldGeometry). The single most efficient way to 
		render large amounts of static geometry is to use a SceneManager which 
		is specialised for dealing with that particular world structure. 
		However, this class does provide you with a good 'halfway house'
		between generalised movable geometry (Entity) which works with all 
		SceneManagers but isn't efficient when using very large numbers, and 
		highly specialised world geometry which is extremely fast but not 
		generic and typically requires custom world editors.
	@par
		You should not construct instances of this class directly; instead, cal 
		SceneManager::createStaticGeometry, which gives the SceneManager the 
		option of providing you with a specialised version of this class if it
		wishes, and also handles the memory management for you like other 
		classes.
	@note
		Warning: this class only works with indexed triangle lists at the moment,
		do not pass it triangle strips, fans or lines / points, or unindexed geometry.
	*/
	class _OgreExport StaticGeometry : public BatchedGeometryAlloc
	{
	public:
		/** Struct holding geometry optimised per SubMesh / lod level, ready
			for copying to instances. 
		@remarks
			Since we're going to be duplicating geometry lots of times, it's
			far more important that we don't have redundant vertex data. If a 
			SubMesh uses shared geometry, or we're looking at a lower LOD, not
			all the vertices are being referenced by faces on that submesh.
			Therefore to duplicate them, potentially hundreds or even thousands
			of times, would be extremely wasteful. Therefore, if a SubMesh at
			a given LOD has wastage, we create an optimised version of it's
			geometry which is ready for copying with no wastage.
		*/
		class _OgrePrivate OptimisedSubMeshGeometry : public BatchedGeometryAlloc
		{
		public:
			OptimisedSubMeshGeometry() :vertexData(0), indexData(0) {}
			~OptimisedSubMeshGeometry() 
			{
				OGRE_DELETE vertexData;
				OGRE_DELETE indexData;
			}
			VertexData *vertexData;
			IndexData *indexData;
		};
		typedef list<OptimisedSubMeshGeometry*>::type OptimisedSubMeshGeometryList;
		/// Saved link between SubMesh at a LOD and vertex/index data
		/// May point to original or optimised geometry
		struct SubMeshLodGeometryLink
		{
			VertexData* vertexData;
			IndexData* indexData;
		};
		typedef vector<SubMeshLodGeometryLink>::type SubMeshLodGeometryLinkList;
		typedef map<SubMesh*, SubMeshLodGeometryLinkList*>::type SubMeshGeometryLookup;
		/// Structure recording a queued submesh for the build
		struct QueuedSubMesh : public BatchedGeometryAlloc
		{
			SubMesh* submesh;
			/// Link to LOD list of geometry, potentially optimised
			SubMeshLodGeometryLinkList* geometryLodList;
			String materialName;
			Vector3 position;
			Quaternion orientation;
			Vector3 scale;
			/// Pre-transformed world AABB 
			AxisAlignedBox worldBounds;
		};
		typedef vector<QueuedSubMesh*>::type QueuedSubMeshList;
		/// Structure recording a queued geometry for low level builds
		struct QueuedGeometry : public BatchedGeometryAlloc
		{
			SubMeshLodGeometryLink* geometry;
			Vector3 position;
			Quaternion orientation;
			Vector3 scale;
		};
		typedef vector<QueuedGeometry*>::type QueuedGeometryList;
		
		// forward declarations
		class LODBucket;
		class MaterialBucket;
		class Region;

		/** A GeometryBucket is a the lowest level bucket where geometry with 
			the same vertex & index format is stored. It also acts as the 
			renderable.
		*/
		class _OgreExport GeometryBucket :	public Renderable,  public BatchedGeometryAlloc
		{
		protected:
			/// Geometry which has been queued up pre-build (not for deallocation)
			QueuedGeometryList mQueuedGeometry;
			/// Pointer to parent bucket
			MaterialBucket* mParent;
			/// String identifying the vertex / index format
			String mFormatString;
			/// Vertex information, includes current number of vertices
			/// committed to be a part of this bucket
			VertexData* mVertexData;
			/// Index information, includes index type which limits the max
			/// number of vertices which are allowed in one bucket
			IndexData* mIndexData;
			/// Size of indexes
			HardwareIndexBuffer::IndexType mIndexType;
			/// Maximum vertex indexable
			size_t mMaxVertexIndex;

			template<typename T>
			void copyIndexes(const T* src, T* dst, size_t count, size_t indexOffset)
			{
				if (indexOffset == 0)
				{
					memcpy(dst, src, sizeof(T) * count);
				}
				else
				{
					while(count--)
					{
						*dst++ = static_cast<T>(*src++ + indexOffset);
					}
				}
			}
		public:
			GeometryBucket(MaterialBucket* parent, const String& formatString, 
				const VertexData* vData, const IndexData* iData);
			virtual ~GeometryBucket();
			MaterialBucket* getParent(void) { return mParent; }
			/// Get the vertex data for this geometry 
			const VertexData* getVertexData(void) const { return mVertexData; }
			/// Get the index data for this geometry 
			const IndexData* getIndexData(void) const { return mIndexData; }
			/// @copydoc Renderable::getMaterial
			const MaterialPtr& getMaterial(void) const;
			Technique* getTechnique(void) const;
			void getRenderOperation(RenderOperation& op);
	        void getWorldTransforms(Matrix4* xform) const;
			Real getSquaredViewDepth(const Camera* cam) const;
	        const LightList& getLights(void) const;
			bool getCastsShadows(void) const;
			
			/** Try to assign geometry to this bucket.
			@return false if there is no room left in this bucket
			*/
			bool assign(QueuedGeometry* qsm);
			/// Build
			void build(bool stencilShadows);
			/// Dump contents for diagnostics
			void dump(std::ofstream& of) const;
		};
		/** A MaterialBucket is a collection of smaller buckets with the same 
			Material (and implicitly the same LOD). */
		class _OgreExport MaterialBucket : public BatchedGeometryAlloc
		{
		public:
			/// list of Geometry Buckets in this region
			typedef vector<GeometryBucket*>::type GeometryBucketList;
		protected:
			/// Pointer to parent LODBucket
			LODBucket* mParent;
			/// Material being used
			String mMaterialName;
			/// Pointer to material being used
			MaterialPtr mMaterial;
			/// Active technique
			Technique* mTechnique;

			/// list of Geometry Buckets in this region
			GeometryBucketList mGeometryBucketList;
			// index to current Geometry Buckets for a given geometry format
			typedef map<String, GeometryBucket*>::type CurrentGeometryMap;
			CurrentGeometryMap mCurrentGeometryMap;
			/// Get a packed string identifying the geometry format
			String getGeometryFormatString(SubMeshLodGeometryLink* geom);
			
		public:
			MaterialBucket(LODBucket* parent, const String& materialName);
			virtual ~MaterialBucket();
			LODBucket* getParent(void) { return mParent; }
			/// Get the material name
			const String& getMaterialName(void) const { return mMaterialName; }
			/// Assign geometry to this bucket
			void assign(QueuedGeometry* qsm);
			/// Build
			void build(bool stencilShadows);
			/// Add children to the render queue
			void addRenderables(RenderQueue* queue, uint8 group, 
				Real lodValue);
			/// Get the material for this bucket
			const MaterialPtr& getMaterial(void) const { return mMaterial; }
			/// Iterator over geometry
			typedef VectorIterator<GeometryBucketList> GeometryIterator;
			/// Get an iterator over the contained geometry
			GeometryIterator getGeometryIterator(void);
			/// Get the current Technique
			Technique* getCurrentTechnique(void) const { return mTechnique; }
			/// Dump contents for diagnostics
			void dump(std::ofstream& of) const;
			void visitRenderables(Renderable::Visitor* visitor, bool debugRenderables);
		};
		/** A LODBucket is a collection of smaller buckets with the same LOD. 
		@remarks
			LOD refers to Mesh LOD here. Material LOD can change separately
			at the next bucket down from this.
		*/
		class _OgreExport LODBucket : public BatchedGeometryAlloc
		{
		public:
			/// Lookup of Material Buckets in this region
			typedef map<String, MaterialBucket*>::type MaterialBucketMap;
		protected:
			/** Nested class to allow shadows. */
			class _OgreExport LODShadowRenderable : public ShadowRenderable
			{
			protected:
				LODBucket* mParent;
				// Shared link to position buffer
				HardwareVertexBufferSharedPtr mPositionBuffer;
				// Shared link to w-coord buffer (optional)
				HardwareVertexBufferSharedPtr mWBuffer;

			public:
				LODShadowRenderable(LODBucket* parent, 
					HardwareIndexBufferSharedPtr* indexBuffer, const VertexData* vertexData, 
					bool createSeparateLightCap, bool isLightCap = false);
				~LODShadowRenderable();
				/// Overridden from ShadowRenderable
				void getWorldTransforms(Matrix4* xform) const;
				HardwareVertexBufferSharedPtr getPositionBuffer(void) { return mPositionBuffer; }
				HardwareVertexBufferSharedPtr getWBuffer(void) { return mWBuffer; }
				/// Overridden from ShadowRenderable
				virtual void rebindIndexBuffer(const HardwareIndexBufferSharedPtr& indexBuffer);

			};
			/// Pointer to parent region
			Region* mParent;
			/// LOD level (0 == full LOD)
			unsigned short mLod;
			/// lod value at which this LOD starts to apply (squared)
			Real mLodValue;
			/// Lookup of Material Buckets in this region
			MaterialBucketMap mMaterialBucketMap;
			/// Geometry queued for a single LOD (deallocated here)
			QueuedGeometryList mQueuedGeometryList;
			/// Edge list, used if stencil shadow casting is enabled 
			EdgeData* mEdgeList;
			/// Is a vertex program in use somewhere in this group?
			bool mVertexProgramInUse;
			/// List of shadow renderables
			ShadowCaster::ShadowRenderableList mShadowRenderables;
		public:
			LODBucket(Region* parent, unsigned short lod, Real lodValue);
			virtual ~LODBucket();
			Region* getParent(void) { return mParent; }
			/// Get the lod index
			ushort getLod(void) const { return mLod; }
			/// Get the lod value
			Real getLodValue(void) const { return mLodValue; }
			/// Assign a queued submesh to this bucket, using specified mesh LOD
			void assign(QueuedSubMesh* qsm, ushort atLod);
			/// Build
			void build(bool stencilShadows);
			/// Add children to the render queue
			void addRenderables(RenderQueue* queue, uint8 group, 
				Real lodValue);
			/// Iterator over the materials in this LOD
			typedef MapIterator<MaterialBucketMap> MaterialIterator;
			/// Get an iterator over the materials in this LOD
			MaterialIterator getMaterialIterator(void);
			/// Dump contents for diagnostics
			void dump(std::ofstream& of) const;
			void visitRenderables(Renderable::Visitor* visitor, bool debugRenderables);
			EdgeData* getEdgeList() const { return mEdgeList; }
			ShadowCaster::ShadowRenderableList& getShadowRenderableList() { return mShadowRenderables; }
			bool isVertexProgramInUse() const { return mVertexProgramInUse; }
			void updateShadowRenderables(
				ShadowTechnique shadowTechnique, const Vector4& lightPos, 
				HardwareIndexBufferSharedPtr* indexBuffer, 
				bool extrudeVertices, Real extrusionDistance, unsigned long flags = 0 );
			
		};
		/** The details of a topological region which is the highest level of
			partitioning for this class.
		@remarks
			The size & shape of regions entirely depends on the SceneManager
			specific implementation. It is a MovableObject since it will be
			attached to a node based on the local centre - in practice it
			won't actually move (although in theory it could).
		*/
		class _OgreExport Region : public MovableObject
		{
            friend class MaterialBucket;
            friend class GeometryBucket;
		public:
			/// list of LOD Buckets in this region
			typedef vector<LODBucket*>::type LODBucketList;
		protected:
			/// Parent static geometry
			StaticGeometry* mParent;
			/// Scene manager link
			SceneManager* mSceneMgr;
			/// Scene node
			SceneNode* mNode;
			/// Local list of queued meshes (not used for deallocation)
			QueuedSubMeshList mQueuedSubMeshes;
			/// Unique identifier for the region
			uint32 mRegionID;
			/// Center of the region
			Vector3 mCentre;
			/// Lod values as built up - use the max at each level
			Mesh::LodValueList mLodValues;
			/// Local AABB relative to region centre
			AxisAlignedBox mAABB;
			/// Local bounding radius
			Real mBoundingRadius;
			/// The current lod level, as determined from the last camera
			ushort mCurrentLod;
			/// Current lod value, passed on to do material lod later
			Real mLodValue;
			/// List of LOD buckets			
			LODBucketList mLodBucketList;
			/// List of lights for this region
			mutable LightList mLightList;
			/// The last frame that this light list was updated in
			mutable ulong mLightListUpdated;
            /// Lod strategy reference
            const LodStrategy *mLodStrategy;
            /// Current camera
            Camera *mCamera;
            /// Cached squared view depth value to avoid recalculation by GeometryBucket
            Real mSquaredViewDepth;

		public:
			Region(StaticGeometry* parent, const String& name, SceneManager* mgr, 
				uint32 regionID, const Vector3& centre);
			virtual ~Region();
			// more fields can be added in subclasses
			StaticGeometry* getParent(void) const { return mParent;}
			/// Assign a queued mesh to this region, read for final build
			void assign(QueuedSubMesh* qmesh);
			/// Build this region
			void build(bool stencilShadows);
			/// Get the region ID of this region
			uint32 getID(void) const { return mRegionID; }
			/// Get the centre point of the region
			const Vector3& getCentre(void) const { return mCentre; }
			const String& getMovableType(void) const;
			void _notifyCurrentCamera(Camera* cam);
			const AxisAlignedBox& getBoundingBox(void) const;
			Real getBoundingRadius(void) const;
			void _updateRenderQueue(RenderQueue* queue);
			/// @copydoc MovableObject::visitRenderables
			void visitRenderables(Renderable::Visitor* visitor, 
				bool debugRenderables = false);
			bool isVisible(void) const;
			uint32 getTypeFlags(void) const;

			typedef VectorIterator<LODBucketList> LODIterator;
			/// Get an iterator over the LODs in this region
			LODIterator getLODIterator(void);
			/// @copydoc ShadowCaster::getShadowVolumeRenderableIterator
			ShadowRenderableListIterator getShadowVolumeRenderableIterator(
				ShadowTechnique shadowTechnique, const Light* light, 
				HardwareIndexBufferSharedPtr* indexBuffer, 
				bool extrudeVertices, Real extrusionDistance, unsigned long flags = 0 );
			/// Overridden from MovableObject
			EdgeData* getEdgeList(void);
			/** Overridden member from ShadowCaster. */
			bool hasEdgeList(void);

			/// Dump contents for diagnostics
			void dump(std::ofstream& of) const;
			
		};
		/** Indexed region map based on packed x/y/z region index, 10 bits for
			each axis.
		@remarks
			Regions are indexed 0-1023 in all axes, where for example region 
			0 in the x axis begins at mOrigin.x + (mRegionDimensions.x * -512), 
			and region 1023 ends at mOrigin + (mRegionDimensions.x * 512).
		*/
		typedef map<uint32, Region*>::type RegionMap;
	protected:
		// General state & settings
		SceneManager* mOwner;
		String mName;
		bool mBuilt;
		Real mUpperDistance;
		Real mSquaredUpperDistance;
		bool mCastShadows;
		Vector3 mRegionDimensions;
		Vector3 mHalfRegionDimensions;
		Vector3 mOrigin;
		bool mVisible;
        /// The render queue to use when rendering this object
        uint8 mRenderQueueID;
		/// Flags whether the RenderQueue's default should be used.
		bool mRenderQueueIDSet;
		/// Stores the visibility flags for the regions
		uint32 mVisibilityFlags;

		QueuedSubMeshList mQueuedSubMeshes;

		/// List of geometry which has been optimised for SubMesh use
		/// This is the primary storage used for cleaning up later
		OptimisedSubMeshGeometryList mOptimisedSubMeshGeometryList;

		/** Cached links from SubMeshes to (potentially optimised) geometry
			This is not used for deletion since the lookup may reference
			original vertex data
		*/
		SubMeshGeometryLookup mSubMeshGeometryLookup;
			
		/// Map of regions
		RegionMap mRegionMap;

		/** Virtual method for getting a region most suitable for the
			passed in bounds. Can be overridden by subclasses.
		*/
		virtual Region* getRegion(const AxisAlignedBox& bounds, bool autoCreate);
		/** Get the region within which a point lies */
		virtual Region* getRegion(const Vector3& point, bool autoCreate);
		/** Get the region using indexes */
		virtual Region* getRegion(ushort x, ushort y, ushort z, bool autoCreate);
		/** Get the region using a packed index, returns null if it doesn't exist. */
		virtual Region* getRegion(uint32 index);
		/** Get the region indexes for a point.
		*/
		virtual void getRegionIndexes(const Vector3& point, 
			ushort& x, ushort& y, ushort& z);
		/** Pack 3 indexes into a single index value
		*/
		virtual uint32 packIndex(ushort x, ushort y, ushort z);
		/** Get the volume intersection for an indexed region with some bounds.
		*/
		virtual Real getVolumeIntersection(const AxisAlignedBox& box,  
			ushort x, ushort y, ushort z);
		/** Get the bounds of an indexed region.
		*/
		virtual AxisAlignedBox getRegionBounds(ushort x, ushort y, ushort z);
		/** Get the centre of an indexed region.
		*/
		virtual Vector3 getRegionCentre(ushort x, ushort y, ushort z);
		/** Calculate world bounds from a set of vertex data. */
		virtual AxisAlignedBox calculateBounds(VertexData* vertexData, 
			const Vector3& position, const Quaternion& orientation, 
			const Vector3& scale);
		/** Look up or calculate the geometry data to use for this SubMesh */
		SubMeshLodGeometryLinkList* determineGeometry(SubMesh* sm);
		/** Split some shared geometry into dedicated geometry. */
		void splitGeometry(VertexData* vd, IndexData* id, 
			SubMeshLodGeometryLink* targetGeomLink);

		typedef map<size_t, size_t>::type IndexRemap;
		/** Method for figuring out which vertices are used by an index buffer
			and calculating a remap lookup for a vertex buffer just containing
			those vertices. 
		*/
		template <typename T>
		void buildIndexRemap(T* pBuffer, size_t numIndexes, IndexRemap& remap)
		{
			remap.clear();
			for (size_t i = 0; i < numIndexes; ++i)
			{
				// use insert since duplicates are silently discarded
				remap.insert(IndexRemap::value_type(*pBuffer++, remap.size()));
				// this will have mapped oldindex -> new index IF oldindex
				// wasn't already there
			}
		}
		/** Method for altering indexes based on a remap. */
		template <typename T>
		void remapIndexes(T* src, T* dst, const IndexRemap& remap, 
				size_t numIndexes)
		{
			for (size_t i = 0; i < numIndexes; ++i)
			{
				// look up original and map to target
				IndexRemap::const_iterator ix = remap.find(*src++);
				assert(ix != remap.end());
				*dst++ = static_cast<T>(ix->second);
			}
		}
		
	public:
		/// Constructor; do not use directly (@see SceneManager::createStaticGeometry)
		StaticGeometry(SceneManager* owner, const String& name);
		/// Destructor
		virtual ~StaticGeometry();

		/// Get the name of this object
		const String& getName(void) const { return mName; }
		/** Adds an Entity to the static geometry.
		@remarks
			This method takes an existing Entity and adds its details to the 
			list of	elements to include when building. Note that the Entity
			itself is not copied or referenced in this method; an Entity is 
			passed simply so that you can change the materials of attached 
			SubEntity objects if you want. You can add the same Entity 
			instance multiple times with different material settings 
			completely safely, and destroy the Entity before destroying 
			this StaticGeometry if you like. The Entity passed in is simply 
			used as a definition.
		@note Must be called before 'build'.
		@param ent The Entity to use as a definition (the Mesh and Materials 
			referenced will be recorded for the build call).
		@param position The world position at which to add this Entity
		@param orientation The world orientation at which to add this Entity
		@param scale The scale at which to add this entity
		*/
		virtual void addEntity(Entity* ent, const Vector3& position,
			const Quaternion& orientation = Quaternion::IDENTITY, 
			const Vector3& scale = Vector3::UNIT_SCALE);

		/** Adds all the Entity objects attached to a SceneNode and all it's
			children to the static geometry.
		@remarks
			This method performs just like addEntity, except it adds all the 
			entities attached to an entire sub-tree to the geometry. 
			The position / orientation / scale parameters are taken from the
			node structure instead of being specified manually. 
		@note
			The SceneNode you pass in will not be automatically detached from 
			it's parent, so if you have this node already attached to the scene
			graph, you will need to remove it if you wish to avoid the overhead
			of rendering <i>both</i> the original objects and their new static
			versions! We don't do this for you incase you are preparing this 
			in advance and so don't want the originals detached yet. 
		@note Must be called before 'build'.
		@param node Pointer to the node to use to provide a set of Entity 
			templates
		*/
		virtual void addSceneNode(const SceneNode* node);

		/** Build the geometry. 
		@remarks
			Based on all the entities which have been added, and the batching 
			options which have been set, this method constructs	the batched 
			geometry structures required. The batches are added to the scene 
			and will be rendered unless you specifically hide them.
		@note
			Once you have called this method, you can no longer add any more 
			entities.
		*/
		virtual void build(void);

		/** Destroys all the built geometry state (reverse of build). 
		@remarks
			You can call build() again after this and it will pick up all the
			same entities / nodes you queued last time.
		*/
		virtual void destroy(void);

		/** Clears any of the entities / nodes added to this geometry and 
			destroys anything which has already been built.
		*/
		virtual void reset(void);

		/** Sets the distance at which batches are no longer rendered.
		@remarks
			This lets you turn off batches at a given distance. This can be 
			useful for things like detail meshes (grass, foliage etc) and could
			be combined with a shader which fades the geometry out beforehand 
			to lessen the effect.
		@param dist Distance beyond which the batches will not be rendered 
			(the default is 0, which means batches are always rendered).
		*/
		virtual void setRenderingDistance(Real dist) { 
			mUpperDistance = dist; 
			mSquaredUpperDistance = mUpperDistance * mUpperDistance;
		}

		/** Gets the distance at which batches are no longer rendered. */
		virtual Real getRenderingDistance(void) const { return mUpperDistance; }

		/** Gets the squared distance at which batches are no longer rendered. */
		virtual Real getSquaredRenderingDistance(void) const 
		{ return mSquaredUpperDistance; }

		/** Hides or shows all the batches. */
		virtual void setVisible(bool visible);

		/** Are the batches visible? */
		virtual bool isVisible(void) const { return mVisible; }

		/** Sets whether this geometry should cast shadows.
		@remarks
			No matter what the settings on the original entities,
			the StaticGeometry class defaults to not casting shadows. 
			This is because, being static, unless you have moving lights
			you'd be better to use precalculated shadows of some sort.
			However, if you need them, you can enable them using this
			method. If the SceneManager is set up to use stencil shadows,
			edge lists will be copied from the underlying meshes on build.
			It is essential that all meshes support stencil shadows in this
			case.
		@note If you intend to use stencil shadows, you must set this to 
			true before calling 'build' as well as making sure you set the
			scene's shadow type (that should always be the first thing you do
			anyway). You can turn shadows off temporarily but they can never 
			be turned on if they were not at the time of the build. 
		*/
		virtual void setCastShadows(bool castShadows);
		/// Will the geometry from this object cast shadows?
		virtual bool getCastShadows(void) { return mCastShadows; }

		/** Sets the size of a single region of geometry.
		@remarks
			This method allows you to configure the physical world size of 
			each region, so you can balance culling against batch size. Entities
			will be fitted within the batch they most closely fit, and the 
			eventual bounds of each batch may well be slightly larger than this
			if they overlap a little. The default is Vector3(1000, 1000, 1000).
		@note Must be called before 'build'.
		@param size Vector3 expressing the 3D size of each region.
		*/
		virtual void setRegionDimensions(const Vector3& size) { 
			mRegionDimensions = size; 
			mHalfRegionDimensions = size * 0.5;
		}
		/** Gets the size of a single batch of geometry. */
		virtual const Vector3& getRegionDimensions(void) const { return mRegionDimensions; }
		/** Sets the origin of the geometry.
		@remarks
			This method allows you to configure the world centre of the geometry,
			thus the place which all regions surround. You probably don't need 
			to mess with this unless you have a seriously large world, since the
			default set up can handle an area 1024 * mRegionDimensions, and 
			the sparseness of population is no issue when it comes to rendering.
			The default is Vector3(0,0,0).
		@note Must be called before 'build'.
		@param size Vector3 expressing the 3D origin of the geometry.
		*/
		virtual void setOrigin(const Vector3& origin) { mOrigin = origin; }
		/** Gets the origin of this geometry. */
		virtual const Vector3& getOrigin(void) const { return mOrigin; }

		/// Sets the visibility flags of all the regions at once
		void setVisibilityFlags(uint32 flags);
		/// Returns the visibility flags of the regions
		uint32 getVisibilityFlags() const;

        /** Sets the render queue group this object will be rendered through.
        @remarks
            Render queues are grouped to allow you to more tightly control the ordering
            of rendered objects. If you do not call this method, all  objects default
            to the default queue (RenderQueue::getDefaultQueueGroup), which is fine for 
			most objects. You may want to alter this if you want to perform more complex
			rendering.
        @par
            See RenderQueue for more details.
        @param queueID Enumerated value of the queue group to use.
        */
        virtual void setRenderQueueGroup(uint8 queueID);

        /** Gets the queue group for this entity, see setRenderQueueGroup for full details. */
        virtual uint8 getRenderQueueGroup(void) const;
		/// @copydoc MovableObject::visitRenderables
		void visitRenderables(Renderable::Visitor* visitor, 
			bool debugRenderables = false);
		
		/// Iterator for iterating over contained regions
		typedef MapIterator<RegionMap> RegionIterator;
		/// Get an iterator over the regions in this geometry
		RegionIterator getRegionIterator(void);

		/** Dump the contents of this StaticGeometry to a file for diagnostic
		 	purposes.
		*/
		virtual void dump(const String& filename) const;


	};
	/** @} */
	/** @} */

}

#endif