/usr/include/odindata/complexdata.h is in libodin-dev 1.8.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | /***************************************************************************
complexdata.h - description
-------------------
begin : Fri Apr 6 2001
copyright : (C) 2000-2014 by Thies Jochimsen & Michael von Mengershausen
email : thies@jochimsen.de mengers@cns.mpg.de
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#ifndef COMPLEXDATA_H
#define COMPLEXDATA_H
#include <odindata/data.h>
#include <odindata/utils.h>
/**
* @addtogroup odindata
* @{
*/
///////////////////////////////////////////////////////
/**
* This template class holds multidimensional complex data, most suitable for NMR signal.
* In addition to functionality provided by the Data Array class,
* it offers advanced numerical routines (FFT) and block-wise
* processing of large data files.
*/
template <int N_rank>
class ComplexData : public Data<STD_complex,N_rank> {
public:
/**
* Default constructor
*/
ComplexData() {}
/**
* Constructs a complex array with the given dimensionality
*/
ComplexData(const TinyVector<int,N_rank>& dimvec) : Data<STD_complex,N_rank>(dimvec) {(*this)=STD_complex(0.0);}
/**
* Constructor with a variable list of arguments to specify the extend
* in each dimension, the number of args must match N_rank
*/
// resolve ambiguities due to other constructors
ComplexData(int extent1) : Data<STD_complex,N_rank>(extent1) {}
ComplexData(int extent1, int extent2) : Data<STD_complex,N_rank>(extent1,extent2) {}
ComplexData(int extent1, int extent2,int extent3) : Data<STD_complex,N_rank>(extent1,extent2,extent3) {}
ComplexData(int extent1, int extent2,int extent3,int extent4) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4) {}
ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5) {}
ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5,int extent6) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5,extent6) {}
ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5,int extent6,int extent7) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5,extent6,extent7) {}
ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5,int extent6,int extent7,int extent8) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5,extent6,extent7,extent8) {}
ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5,int extent6,int extent7,int extent8,int extent9) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5,extent6,extent7,extent8,extent9) {}
/**
* Copy constructor
*/
ComplexData(const ComplexData<N_rank>& cd) : Data<STD_complex,N_rank>(cd) {}
/**
* Copy constructor from Data
*/
ComplexData(const Data<STD_complex,N_rank>& a) : Data<STD_complex,N_rank>(a) {}
/**
* Constructor from expression template
*/
template<class T_expr>
ComplexData(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr) : Data<STD_complex,N_rank>(expr) {}
/**
* Assignment operator
*/
ComplexData<N_rank>& operator = (const ComplexData<N_rank>& d) {Data<STD_complex,N_rank>::operator=(d); return *this;}
/**
* Assignment operator from Blitz::Array
*/
ComplexData<N_rank>& operator = (const Array<STD_complex,N_rank>& a) {Array<STD_complex,N_rank>::operator=(a); return *this;}
/**
* Fills all elements with 'val'
*/
ComplexData<N_rank>& operator = (const STD_complex& val) {Data<STD_complex,N_rank>::operator=(val); return *this;}
/**
* Assignment operator for expression templates
*/
template<class T_expr>
inline ComplexData<N_rank>& operator = (BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr) {
ComplexData<N_rank>::reference(ComplexData<N_rank>(expr)); // forwarding to constructor
return *this;
}
// resolve ambiguities, appears to be obsolete with blitz-0.9 and later versions
// Array<STD_complex,N_rank> operator + (const ComplexData<N_rank>& b) const {return Array<STD_complex,N_rank>(Array<STD_complex,N_rank>(*this)+Array<STD_complex,N_rank>(b));}
// Array<STD_complex,N_rank> operator - (const ComplexData<N_rank>& b) const {return Array<STD_complex,N_rank>(Array<STD_complex,N_rank>(*this)-Array<STD_complex,N_rank>(b));}
// Array<STD_complex,N_rank> operator * (const ComplexData<N_rank>& b) const {return Array<STD_complex,N_rank>(Array<STD_complex,N_rank>(*this)*Array<STD_complex,N_rank>(b));}
// Array<STD_complex,N_rank> operator / (const ComplexData<N_rank>& b) const {return Array<STD_complex,N_rank>(Array<STD_complex,N_rank>(*this)/Array<STD_complex,N_rank>(b));}
/**
* Performs an in-place FFT with the following properties:
* - forward: Whether to do a forward (true) or backward (false) FFT
* - cyclic_shift: Whether to shift data cyclically so that zero frequency
* is in the middle of the array after FFT
*/
void fft(bool forward=true, bool cyclic_shift=true);
/**
* Performs an in-place FFT over a partial number of dimensions with the following properties:
* - do_fft: A vector where the index should be set to 'true' if the FFT should be performed for the corresponding dimension
* - forward: Whether to do a forward (true) or backward (false) FFT
* - cyclic_shift: Whether to shift data cyclically so that zero frequency
* is in the middle of the array after FFT
*/
void partial_fft(const TinyVector<bool,N_rank>& do_fft, bool forward=true, bool cyclic_shift=true);
/**
* Modulate a phase gradient onto the array so that after FFT, the data will be shifted
* in each dimension by 'rel_offset' which is given as a fraction relative to the full size,
* i.e. a value of 0.5 shifts the array by half its size.
*
*/
void modulate_offset(const TinyVector<float,N_rank>& rel_offset);
/**
* Shift the data by the number of pixels given in 'shiftvec' for each dimension using the FFT,
* i.e. this is possible even with fractions.
*/
void shift_subpixel(const TinyVector<float,N_rank>& shiftvec);
/**
* Returns the phase of the complex array, whereby the phase is unwrapped in the last dimension
*/
Data<float,N_rank> phasemap() const;
};
/** @}
*/
///////////////////////////////////////////////////////
template <int N_rank>
void ComplexData<N_rank>::fft(bool forward, bool cyclic_shift) {
Log<OdinData> odinlog("ComplexData","fft");
TinyVector<bool,N_rank> do_fft=true;
ComplexData<N_rank>::partial_fft(do_fft, forward, cyclic_shift);
}
///////////////////////////////////////////////////////
// call FFT of GSL
struct GslFftWorkSpace; // forward declaration
class GslFft {
public:
GslFft(int length);
~GslFft();
void fft1d(double* complex_data, bool forward_fft);
private:
GslFftWorkSpace* ws;
};
///////////////////////////////////////////////////////
template <int N_rank>
void ComplexData<N_rank>::partial_fft(const TinyVector<bool,N_rank>& do_fft, bool forward, bool cyclic_shift) {
Log<OdinData> odinlog("ComplexData","partial_fft");
TinyVector<int,N_rank> myshape(Array<STD_complex,N_rank>::shape());
TinyVector<int,N_rank> cyclshift=(ComplexData<N_rank>::shape())/2;
// Shift (back) prior to FFT to get flat phasemap
if(cyclic_shift) {
for(int irank=0; irank<N_rank; irank++) {
if(do_fft(irank)) ComplexData<N_rank>::shift(irank,-cyclshift(irank));
}
}
TinyVector<int,N_rank> indexvec;
for(int irank=0; irank<N_rank; irank++) {
if(do_fft(irank)) {
// This holds the the shape of the subspace which is orthogonal to direction 'irank'
TinyVector<int,N_rank> ortho_shape(myshape);
ortho_shape(irank)=1;
int oneline_size=myshape(irank);
double *complex_data= new double[2*oneline_size];
GslFft gslfft(oneline_size);
// The total number of elements in the orthogonal subspace
unsigned long n_ortho=product(ortho_shape);
ODINLOG(odinlog,normalDebug) << "oneline_size/irank/n_ortho=" << oneline_size << "/" << irank << "/" << n_ortho << STD_endl;
for(unsigned long iortho=0; iortho<n_ortho; iortho++) {
indexvec=index2extent<N_rank>(ortho_shape,iortho);
for(int j=0; j<oneline_size; j++) {
indexvec(irank)=j;
complex_data[2*j]= (*this)(indexvec).real();
complex_data[2*j+1]=(*this)(indexvec).imag();
}
gslfft.fft1d(complex_data, forward);
for(int j=0; j<oneline_size; j++) {
indexvec(irank)=j;
float scale=1.0/sqrt(double(oneline_size));
(*this)(indexvec)=scale*STD_complex(complex_data[2*j],complex_data[2*j+1]);
}
}
delete[] complex_data;
}
}
// Shift after FFT
if(cyclic_shift) {
for(int irank=0; irank<N_rank; irank++) {
if(do_fft(irank)) {
ODINLOG(odinlog,normalDebug) << "Cyclic shift in dim=" << irank << STD_endl;
ComplexData<N_rank>::shift(irank,cyclshift(irank)); // scope reuired by GCC 4.7
}
}
}
}
///////////////////////////////////////////////////////
template <int N_rank>
void ComplexData<N_rank>::modulate_offset(const TinyVector<float,N_rank>& rel_offset) {
Log<OdinData> odinlog("ComplexData","modulate_offset");
TinyVector<int, N_rank> index;
for(int i=0; i<Array<STD_complex,N_rank>::numElements(); i++) {
index=Data<STD_complex,N_rank>::create_index(i);
(*this)(index)*=exp(float2imag(-2.0*PII*sum(rel_offset*index)));
}
}
///////////////////////////////////////////////////////
template <int N_rank>
void ComplexData<N_rank>::shift_subpixel(const TinyVector<float,N_rank>& shiftvec) {
fft(true);
unsigned int totalsize=Array<STD_complex,N_rank>::numElements();
TinyVector<int, N_rank> index;
for(unsigned int i=0; i<totalsize; i++) {
index=Data<STD_complex,N_rank>::create_index(i);
float im=0.0;
for(int idim=0; idim<N_rank; idim++) {
im+=-2.0*PII*(shiftvec(idim)*float(index(idim))/Array<STD_complex,N_rank>::extent(idim));
}
STD_complex phase(0,im);
(*this)(index)*=exp(phase);
}
fft(false);
}
///////////////////////////////////////////////////////
template <int N_rank>
Data<float,N_rank> ComplexData<N_rank>::phasemap() const {
Range all=Range::all();
const ComplexData<N_rank>& indata=*this;
TinyVector<int,N_rank> myshape(indata.shape());
Data<float,N_rank> result(myshape);
TinyVector<int,N_rank> ortho_shape(myshape);
ortho_shape(N_rank-1)=1;
int nlast=myshape(N_rank-1);
Data<float,1> phasevec(nlast);
Data<float,1> unwrapped(nlast);
TinyVector<int,N_rank> indexvec;
for(int iortho=0; iortho<product(ortho_shape); iortho++) {
indexvec=index2extent<N_rank>(ortho_shape,iortho);
int ilast;
for(ilast=0; ilast<nlast; ilast++) {
indexvec(N_rank-1)=ilast;
phasevec(ilast)=phase(indata(indexvec));
}
unwrapped=unwrap_phase(phasevec, nlast/2);
for(ilast=0; ilast<nlast; ilast++) {
indexvec(N_rank-1)=ilast;
result(indexvec)=unwrapped(ilast);
}
}
return result;
}
#endif
|