This file is indexed.

/usr/include/odindata/complexdata.h is in libodin-dev 1.8.8-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/***************************************************************************
                          complexdata.h  -  description
                             -------------------
    begin                : Fri Apr 6 2001
    copyright            : (C) 2000-2014 by Thies Jochimsen & Michael von Mengershausen
    email                : thies@jochimsen.de  mengers@cns.mpg.de
 ***************************************************************************/

/***************************************************************************
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 ***************************************************************************/

#ifndef COMPLEXDATA_H
#define COMPLEXDATA_H


#include <odindata/data.h>
#include <odindata/utils.h>


/**
  * @addtogroup odindata
  * @{
  */



///////////////////////////////////////////////////////


/**
  * This template class holds multidimensional complex data, most suitable for NMR signal.
  * In addition to functionality  provided by the Data Array class,
  * it offers advanced numerical routines (FFT) and block-wise
  * processing of large data files.
  */
template <int N_rank>
class ComplexData : public Data<STD_complex,N_rank> {

 public:

/**
  * Default constructor
  */
  ComplexData() {}


/**
  * Constructs a complex array with the given dimensionality
  */
  ComplexData(const TinyVector<int,N_rank>& dimvec) : Data<STD_complex,N_rank>(dimvec) {(*this)=STD_complex(0.0);}


/**
  * Constructor with a variable list of arguments to specify the extend
  * in each dimension, the number of args must match N_rank
  */
  // resolve ambiguities due to other constructors
  ComplexData(int extent1) : Data<STD_complex,N_rank>(extent1)  {}
  ComplexData(int extent1, int extent2) : Data<STD_complex,N_rank>(extent1,extent2)  {}
  ComplexData(int extent1, int extent2,int extent3) : Data<STD_complex,N_rank>(extent1,extent2,extent3)  {}
  ComplexData(int extent1, int extent2,int extent3,int extent4) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4)  {}
  ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5)  {}
  ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5,int extent6) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5,extent6)  {}
  ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5,int extent6,int extent7) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5,extent6,extent7)  {}
  ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5,int extent6,int extent7,int extent8) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5,extent6,extent7,extent8)  {}
  ComplexData(int extent1, int extent2,int extent3,int extent4,int extent5,int extent6,int extent7,int extent8,int extent9) : Data<STD_complex,N_rank>(extent1,extent2,extent3,extent4,extent5,extent6,extent7,extent8,extent9)  {}


/**
  * Copy constructor
  */
  ComplexData(const ComplexData<N_rank>& cd) : Data<STD_complex,N_rank>(cd) {}


/**
  * Copy constructor from Data
  */
  ComplexData(const Data<STD_complex,N_rank>& a) : Data<STD_complex,N_rank>(a) {}


/**
  * Constructor from expression template
  */
  template<class T_expr>
  ComplexData(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr) : Data<STD_complex,N_rank>(expr) {}


/**
  * Assignment operator
  */
  ComplexData<N_rank>& operator = (const ComplexData<N_rank>& d) {Data<STD_complex,N_rank>::operator=(d); return *this;}


/**
  * Assignment operator from Blitz::Array
  */
  ComplexData<N_rank>& operator = (const Array<STD_complex,N_rank>& a) {Array<STD_complex,N_rank>::operator=(a); return *this;}


/**
  * Fills all elements with 'val'
  */
  ComplexData<N_rank>& operator = (const STD_complex& val) {Data<STD_complex,N_rank>::operator=(val); return *this;}


/**
  * Assignment operator for expression templates
  */
  template<class T_expr>
  inline ComplexData<N_rank>& operator = (BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr) {
    ComplexData<N_rank>::reference(ComplexData<N_rank>(expr)); // forwarding to constructor
    return *this;
  }

  // resolve ambiguities, appears to be obsolete with blitz-0.9 and later versions
//  Array<STD_complex,N_rank> operator + (const ComplexData<N_rank>& b) const {return Array<STD_complex,N_rank>(Array<STD_complex,N_rank>(*this)+Array<STD_complex,N_rank>(b));}
//  Array<STD_complex,N_rank> operator - (const ComplexData<N_rank>& b) const {return Array<STD_complex,N_rank>(Array<STD_complex,N_rank>(*this)-Array<STD_complex,N_rank>(b));}
//  Array<STD_complex,N_rank> operator * (const ComplexData<N_rank>& b) const {return Array<STD_complex,N_rank>(Array<STD_complex,N_rank>(*this)*Array<STD_complex,N_rank>(b));}
//  Array<STD_complex,N_rank> operator / (const ComplexData<N_rank>& b) const {return Array<STD_complex,N_rank>(Array<STD_complex,N_rank>(*this)/Array<STD_complex,N_rank>(b));}


/**
  * Performs an in-place FFT with the following properties:
  * - forward:  Whether to do a forward (true) or backward (false) FFT
  * - cyclic_shift: Whether to shift data cyclically so that zero frequency
  *   is in the middle of the array after FFT
  */
  void fft(bool forward=true, bool cyclic_shift=true);

/**
  * Performs an in-place FFT over a partial number of dimensions with the following properties:
  * - do_fft: A vector where the index should be set to 'true' if the FFT should be performed for the corresponding dimension
  * - forward:  Whether to do a forward (true) or backward (false) FFT
  * - cyclic_shift: Whether to shift data cyclically so that zero frequency
  *   is in the middle of the array after FFT
  */
  void partial_fft(const TinyVector<bool,N_rank>& do_fft, bool forward=true, bool cyclic_shift=true);


/**
  * Modulate a phase gradient onto the array so that after FFT, the data will be shifted
  * in each dimension by 'rel_offset' which is given as a fraction relative to the full size,
  * i.e. a value of 0.5 shifts the array by half its size.
  *
  */
  void modulate_offset(const TinyVector<float,N_rank>& rel_offset);

/**
  * Shift the data by the number of pixels given in 'shiftvec' for each dimension using the FFT,
  * i.e. this is possible even with fractions.
  */
  void shift_subpixel(const TinyVector<float,N_rank>& shiftvec);


/**
  * Returns the phase of the complex array, whereby the phase is unwrapped in the last dimension
  */
  Data<float,N_rank> phasemap() const;


};


/** @}
  */


///////////////////////////////////////////////////////


template <int N_rank>
void ComplexData<N_rank>::fft(bool forward, bool cyclic_shift) {
  Log<OdinData> odinlog("ComplexData","fft");

  TinyVector<bool,N_rank> do_fft=true;
  ComplexData<N_rank>::partial_fft(do_fft, forward, cyclic_shift);
}


///////////////////////////////////////////////////////

// call FFT of GSL

struct GslFftWorkSpace; // forward declaration

class GslFft {
 public:
  GslFft(int length);
  ~GslFft();
  void fft1d(double* complex_data, bool forward_fft);

 private:
  GslFftWorkSpace* ws;
};

///////////////////////////////////////////////////////

template <int N_rank>
void ComplexData<N_rank>::partial_fft(const TinyVector<bool,N_rank>& do_fft, bool forward, bool cyclic_shift) {
  Log<OdinData> odinlog("ComplexData","partial_fft");

  TinyVector<int,N_rank> myshape(Array<STD_complex,N_rank>::shape());

  TinyVector<int,N_rank> cyclshift=(ComplexData<N_rank>::shape())/2;

  // Shift (back) prior to FFT to get flat phasemap
  if(cyclic_shift) {
    for(int irank=0; irank<N_rank; irank++) {
      if(do_fft(irank)) ComplexData<N_rank>::shift(irank,-cyclshift(irank));
    }
  }

  TinyVector<int,N_rank> indexvec;
  for(int irank=0; irank<N_rank; irank++) {
    if(do_fft(irank)) {

      // This holds the the shape of the subspace which is orthogonal to direction 'irank'
      TinyVector<int,N_rank> ortho_shape(myshape);
      ortho_shape(irank)=1;

      int oneline_size=myshape(irank);
      double *complex_data= new double[2*oneline_size];

      GslFft gslfft(oneline_size);

      // The total number of elements in the orthogonal subspace
      unsigned long n_ortho=product(ortho_shape);
      ODINLOG(odinlog,normalDebug) << "oneline_size/irank/n_ortho=" << oneline_size << "/" << irank << "/" << n_ortho << STD_endl;

      for(unsigned long iortho=0; iortho<n_ortho; iortho++) {
        indexvec=index2extent<N_rank>(ortho_shape,iortho);

        for(int j=0; j<oneline_size; j++) {
          indexvec(irank)=j;
          complex_data[2*j]=  (*this)(indexvec).real();
          complex_data[2*j+1]=(*this)(indexvec).imag();
        }

        gslfft.fft1d(complex_data, forward);

        for(int j=0; j<oneline_size; j++) {
          indexvec(irank)=j;
          float scale=1.0/sqrt(double(oneline_size));
          (*this)(indexvec)=scale*STD_complex(complex_data[2*j],complex_data[2*j+1]);
        }

      }
      delete[] complex_data;
    }
  }

  // Shift after FFT
  if(cyclic_shift) {
    for(int irank=0; irank<N_rank; irank++) {
      if(do_fft(irank)) {
        ODINLOG(odinlog,normalDebug) << "Cyclic shift in dim=" << irank << STD_endl;
        ComplexData<N_rank>::shift(irank,cyclshift(irank)); // scope reuired by GCC 4.7
      }
    }
  }


}


///////////////////////////////////////////////////////


template <int N_rank>
void ComplexData<N_rank>::modulate_offset(const TinyVector<float,N_rank>& rel_offset) {
  Log<OdinData> odinlog("ComplexData","modulate_offset");

  TinyVector<int, N_rank> index;
  for(int i=0; i<Array<STD_complex,N_rank>::numElements(); i++) {
    index=Data<STD_complex,N_rank>::create_index(i);
    (*this)(index)*=exp(float2imag(-2.0*PII*sum(rel_offset*index)));
  }
}

///////////////////////////////////////////////////////

template <int N_rank>
void ComplexData<N_rank>::shift_subpixel(const TinyVector<float,N_rank>& shiftvec) {
  fft(true);

  unsigned int totalsize=Array<STD_complex,N_rank>::numElements();
  TinyVector<int, N_rank> index;

  for(unsigned int i=0; i<totalsize; i++) {
    index=Data<STD_complex,N_rank>::create_index(i);
    float im=0.0;
    for(int idim=0; idim<N_rank; idim++) {
      im+=-2.0*PII*(shiftvec(idim)*float(index(idim))/Array<STD_complex,N_rank>::extent(idim));
    }
    STD_complex phase(0,im);
    (*this)(index)*=exp(phase);
  }


  fft(false);
}


///////////////////////////////////////////////////////



template <int N_rank>
Data<float,N_rank> ComplexData<N_rank>::phasemap() const {

  Range all=Range::all();

  const ComplexData<N_rank>& indata=*this;

  TinyVector<int,N_rank> myshape(indata.shape());
  Data<float,N_rank> result(myshape);

  TinyVector<int,N_rank> ortho_shape(myshape);
  ortho_shape(N_rank-1)=1;

  int nlast=myshape(N_rank-1);
  Data<float,1> phasevec(nlast);
  Data<float,1> unwrapped(nlast);

  TinyVector<int,N_rank> indexvec;

  for(int iortho=0; iortho<product(ortho_shape); iortho++) {
    indexvec=index2extent<N_rank>(ortho_shape,iortho);
    int ilast;
    for(ilast=0; ilast<nlast; ilast++) {
      indexvec(N_rank-1)=ilast;
      phasevec(ilast)=phase(indata(indexvec));
    }
    unwrapped=unwrap_phase(phasevec, nlast/2);
    for(ilast=0; ilast<nlast; ilast++) {
      indexvec(N_rank-1)=ilast;
      result(indexvec)=unwrapped(ilast);
    }
  }

  return result;
}



#endif