This file is indexed.

/usr/include/js/NativeX64.h is in libmozjs185-dev 1.8.5-1.0.0+dfsg-4.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4 -*- */
/* vi: set ts=4 sw=4 expandtab: (add to ~/.vimrc: set modeline modelines=5) */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is [Open Source Virtual Machine].
 *
 * The Initial Developer of the Original Code is
 * Adobe System Incorporated.
 * Portions created by the Initial Developer are Copyright (C) 2008
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Adobe AS3 Team
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef __nanojit_NativeX64__
#define __nanojit_NativeX64__

#include "NativeCommon.h"

#ifndef NANOJIT_64BIT
#error "NANOJIT_64BIT must be defined for X64 backend"
#endif

#ifdef PERFM
#define DOPROF
#include "../vprof/vprof.h"
#define count_instr() _nvprof("x64",1)
#define count_prolog() _nvprof("x64-prolog",1); count_instr();
#define count_imt() _nvprof("x64-imt",1) count_instr()
#else
#define count_instr()
#define count_prolog()
#define count_imt()
#endif

namespace nanojit
{
#define NJ_MAX_STACK_ENTRY              4096
#define NJ_ALIGN_STACK                  16

#define NJ_JTBL_SUPPORTED               1
#define NJ_EXPANDED_LOADSTORE_SUPPORTED 1
#define NJ_F2I_SUPPORTED                1
#define NJ_SOFTFLOAT_SUPPORTED          0
#define NJ_DIVI_SUPPORTED               1

    static const Register RAX = { 0 };      // 1st int return, # of sse varargs
    static const Register RCX = { 1 };      // 4th int arg
    static const Register RDX = { 2 };      // 3rd int arg 2nd return
    static const Register RBX = { 3 };      // saved
    static const Register RSP = { 4 };      // stack ptr
    static const Register RBP = { 5 };      // frame ptr, saved, sib reqd
    static const Register RSI = { 6 };      // 2nd int arg
    static const Register RDI = { 7 };      // 1st int arg
    static const Register R8  = { 8 };      // 5th int arg
    static const Register R9  = { 9 };      // 6th int arg
    static const Register R10 = { 10 };     // scratch
    static const Register R11 = { 11 };     // scratch
    static const Register R12 = { 12 };     // saved
    static const Register R13 = { 13 };     // saved, sib reqd like rbp
    static const Register R14 = { 14 };     // saved
    static const Register R15 = { 15 };     // saved

    static const Register XMM0  = { 16 };   // 1st double arg, return
    static const Register XMM1  = { 17 };   // 2nd double arg, return
    static const Register XMM2  = { 18 };   // 3rd double arg
    static const Register XMM3  = { 19 };   // 4th double arg
    static const Register XMM4  = { 20 };   // 5th double arg
    static const Register XMM5  = { 21 };   // 6th double arg
    static const Register XMM6  = { 22 };   // 7th double arg
    static const Register XMM7  = { 23 };   // 8th double arg
    static const Register XMM8  = { 24 };   // scratch
    static const Register XMM9  = { 25 };   // scratch
    static const Register XMM10 = { 26 };   // scratch
    static const Register XMM11 = { 27 };   // scratch
    static const Register XMM12 = { 28 };   // scratch
    static const Register XMM13 = { 29 };   // scratch
    static const Register XMM14 = { 30 };   // scratch
    static const Register XMM15 = { 31 };   // scratch

    static const Register FP = RBP;
    static const Register RZero = { 0 };  // useful in a few places in codegen

    static const uint32_t FirstRegNum = 0;
    static const uint32_t LastRegNum = 31;

    static const Register deprecated_UnknownReg = { 32 }; // XXX: remove eventually, see bug 538924
    static const Register UnspecifiedReg = { 32 };

/*
 * Micro-templating variable-length opcodes, idea first
 * describe by Mike Pall of Luajit.
 *
 * X86-64 opcode encodings:  LSB encodes the length of the
 * opcode in bytes, remaining bytes are encoded as 1-7 bytes
 * in a single uint64_t value.  The value is written as a single
 * store into the code stream, and the code pointer is decremented
 * by the length.  each successive instruction partially overlaps
 * the previous one.
 *
 * emit methods below are able to encode mod/rm, sib, rex, and
 * register and small immediate values into these opcode values
 * without much branchy code.
 *
 * these opcodes encapsulate all the const parts of the instruction.
 * for example, the alu-immediate opcodes (add, sub, etc) encode
 * part of their opcode in the R field of the mod/rm byte;  this
 * hardcoded value is in the constant below, and the R argument
 * to emitrr() is 0.  In a few cases, a whole instruction is encoded
 * this way (eg callrax).
 *
 * when a disp32, immI, or imm64 suffix can't fit in an 8-byte
 * opcode, then it is written into the code separately and not counted
 * in the opcode length.
 */

    enum X64Opcode
#if defined(_MSC_VER) && _MSC_VER >= 1400
#pragma warning(disable:4480) // nonstandard extension used: specifying underlying type for enum
          : uint64_t
#endif
    {
        // 64bit opcode constants
        //              msb        lsb len
        X64_addqrr  = 0xC003480000000003LL, // 64bit add r += b
        X64_addqri  = 0xC081480000000003LL, // 64bit add r += int64(immI)
        X64_addqr8  = 0x00C0834800000004LL, // 64bit add r += int64(imm8)
        X64_andqri  = 0xE081480000000003LL, // 64bit and r &= int64(immI)
        X64_andqr8  = 0x00E0834800000004LL, // 64bit and r &= int64(imm8)
        X64_orqri   = 0xC881480000000003LL, // 64bit or  r |= int64(immI)
        X64_orqr8   = 0x00C8834800000004LL, // 64bit or  r |= int64(imm8)
        X64_xorqri  = 0xF081480000000003LL, // 64bit xor r ^= int64(immI)
        X64_xorqr8  = 0x00F0834800000004LL, // 64bit xor r ^= int64(imm8)
        X64_addlri  = 0xC081400000000003LL, // 32bit add r += immI
        X64_addlr8  = 0x00C0834000000004LL, // 32bit add r += imm8
        X64_andlri  = 0xE081400000000003LL, // 32bit and r &= immI
        X64_andlr8  = 0x00E0834000000004LL, // 32bit and r &= imm8
        X64_orlri   = 0xC881400000000003LL, // 32bit or  r |= immI
        X64_orlr8   = 0x00C8834000000004LL, // 32bit or  r |= imm8
        X64_sublri  = 0xE881400000000003LL, // 32bit sub r -= immI
        X64_sublr8  = 0x00E8834000000004LL, // 32bit sub r -= imm8
        X64_xorlri  = 0xF081400000000003LL, // 32bit xor r ^= immI
        X64_xorlr8  = 0x00F0834000000004LL, // 32bit xor r ^= imm8
        X64_addrr   = 0xC003400000000003LL, // 32bit add r += b
        X64_andqrr  = 0xC023480000000003LL, // 64bit and r &= b
        X64_andrr   = 0xC023400000000003LL, // 32bit and r &= b
        X64_call    = 0x00000000E8000005LL, // near call
        X64_callrax = 0xD0FF000000000002LL, // indirect call to addr in rax (no REX)
        X64_cmovqno = 0xC0410F4800000004LL, // 64bit conditional mov if (no overflow) r = b
        X64_cmovqnae= 0xC0420F4800000004LL, // 64bit conditional mov if (uint <)  r = b
        X64_cmovqnb = 0xC0430F4800000004LL, // 64bit conditional mov if (uint >=) r = b
        X64_cmovqne = 0xC0450F4800000004LL, // 64bit conditional mov if (c)       r = b
        X64_cmovqna = 0xC0460F4800000004LL, // 64bit conditional mov if (uint <=) r = b
        X64_cmovqnbe= 0xC0470F4800000004LL, // 64bit conditional mov if (uint >)  r = b
        X64_cmovqnge= 0xC04C0F4800000004LL, // 64bit conditional mov if (int <)   r = b
        X64_cmovqnl = 0xC04D0F4800000004LL, // 64bit conditional mov if (int >=)  r = b
        X64_cmovqng = 0xC04E0F4800000004LL, // 64bit conditional mov if (int <=)  r = b
        X64_cmovqnle= 0xC04F0F4800000004LL, // 64bit conditional mov if (int >)   r = b
        X64_cmovno  = 0xC0410F4000000004LL, // 32bit conditional mov if (no overflow) r = b
        X64_cmovnae = 0xC0420F4000000004LL, // 32bit conditional mov if (uint <)  r = b
        X64_cmovnb  = 0xC0430F4000000004LL, // 32bit conditional mov if (uint >=) r = b
        X64_cmovne  = 0xC0450F4000000004LL, // 32bit conditional mov if (c)       r = b
        X64_cmovna  = 0xC0460F4000000004LL, // 32bit conditional mov if (uint <=) r = b
        X64_cmovnbe = 0xC0470F4000000004LL, // 32bit conditional mov if (uint >)  r = b
        X64_cmovnge = 0xC04C0F4000000004LL, // 32bit conditional mov if (int <)   r = b
        X64_cmovnl  = 0xC04D0F4000000004LL, // 32bit conditional mov if (int >=)  r = b
        X64_cmovng  = 0xC04E0F4000000004LL, // 32bit conditional mov if (int <=)  r = b
        X64_cmovnle = 0xC04F0F4000000004LL, // 32bit conditional mov if (int >)   r = b
        X64_cmplr   = 0xC03B400000000003LL, // 32bit compare r,b
        X64_cmpqr   = 0xC03B480000000003LL, // 64bit compare r,b
        X64_cmplri  = 0xF881400000000003LL, // 32bit compare r,immI
        X64_cmpqri  = 0xF881480000000003LL, // 64bit compare r,int64(immI)
        X64_cmplr8  = 0x00F8834000000004LL, // 32bit compare r,imm8
        X64_cmpqr8  = 0x00F8834800000004LL, // 64bit compare r,int64(imm8)
        X64_cvtsi2sd= 0xC02A0F40F2000005LL, // convert int32 to double r = (double) b
        X64_cvtsq2sd= 0xC02A0F48F2000005LL, // convert int64 to double r = (double) b
        X64_cvtss2sd= 0xC05A0F40F3000005LL, // convert float to double r = (double) b
        X64_cvtsd2ss= 0xC05A0F40F2000005LL, // convert double to float r = (float) b
        X64_cvtsd2si= 0xC02D0F40F2000005LL, // convert double to int32 with rounding r = (int32) b
        X64_cvttsd2si=0xC02C0F40F2000005LL, // convert double to int32 r = (int32) b
        X64_divsd   = 0xC05E0F40F2000005LL, // divide scalar double r /= b
        X64_mulsd   = 0xC0590F40F2000005LL, // multiply scalar double r *= b
        X64_addsd   = 0xC0580F40F2000005LL, // add scalar double r += b
        X64_idiv    = 0xF8F7400000000003LL, // 32bit signed div (rax = rdx:rax/r, rdx=rdx:rax%r)
        X64_imul    = 0xC0AF0F4000000004LL, // 32bit signed mul r *= b
        X64_imuli   = 0xC069400000000003LL, // 32bit signed mul r = b * immI
        X64_imul8   = 0x00C06B4000000004LL, // 32bit signed mul r = b * imm8
        X64_jmpi    = 0x0000000025FF0006LL, // jump *0(rip)
        X64_jmp     = 0x00000000E9000005LL, // jump near rel32
        X64_jmp8    = 0x00EB000000000002LL, // jump near rel8
        X64_jo      = 0x00000000800F0006LL, // jump near if overflow
        X64_jb      = 0x00000000820F0006LL, // jump near if below (uint <)
        X64_jae     = 0x00000000830F0006LL, // jump near if above or equal (uint >=)
        X64_ja      = 0x00000000870F0006LL, // jump near if above (uint >)
        X64_jbe     = 0x00000000860F0006LL, // jump near if below or equal (uint <=)
        X64_je      = 0x00000000840F0006LL, // near jump if equal
        X64_jl      = 0x000000008C0F0006LL, // jump near if less (int <)
        X64_jge     = 0x000000008D0F0006LL, // jump near if greater or equal (int >=)
        X64_jg      = 0x000000008F0F0006LL, // jump near if greater (int >)
        X64_jle     = 0x000000008E0F0006LL, // jump near if less or equal (int <=)
        X64_jp      = 0x000000008A0F0006LL, // jump near if parity (PF == 1)
        X64_jneg    = 0x0000000001000000LL, // xor with this mask to negate the condition
        X64_jo8     = 0x0070000000000002LL, // jump near if overflow
        X64_jb8     = 0x0072000000000002LL, // jump near if below (uint <)
        X64_jae8    = 0x0073000000000002LL, // jump near if above or equal (uint >=)
        X64_ja8     = 0x0077000000000002LL, // jump near if above (uint >)
        X64_jbe8    = 0x0076000000000002LL, // jump near if below or equal (uint <=)
        X64_je8     = 0x0074000000000002LL, // near jump if equal
        X64_jne8    = 0x0075000000000002LL, // jump near if not equal
        X64_jl8     = 0x007C000000000002LL, // jump near if less (int <)
        X64_jge8    = 0x007D000000000002LL, // jump near if greater or equal (int >=)
        X64_jg8     = 0x007F000000000002LL, // jump near if greater (int >)
        X64_jle8    = 0x007E000000000002LL, // jump near if less or equal (int <=)
        X64_jp8     = 0x007A000000000002LL, // jump near if parity (PF == 1)
        X64_jnp8    = 0x007B000000000002LL, // jump near if not parity (PF == 0)
        X64_jneg8   = 0x0001000000000000LL, // xor with this mask to negate the condition
        X64_leaqrm  = 0x00000000808D4807LL, // 64bit load effective addr reg <- disp32+base
        X64_lealrm  = 0x00000000808D4007LL, // 32bit load effective addr reg <- disp32+base
        X64_learip  = 0x00000000058D4807LL, // 64bit RIP-relative lea. reg <- disp32+rip (modrm = 00rrr101 = 05)
        X64_movlr   = 0xC08B400000000003LL, // 32bit mov r <- b
        X64_movbmr  = 0x0000000080884007LL, // 8bit store r -> [b+d32]
        X64_movsmr  = 0x8089406600000004LL, // 16bit store r -> [b+d32]
        X64_movlmr  = 0x0000000080894007LL, // 32bit store r -> [b+d32]
        X64_movlrm  = 0x00000000808B4007LL, // 32bit load r <- [b+d32]
        X64_movqmr  = 0x0000000080894807LL, // 64bit store gpr -> [b+d32]
        X64_movqspr = 0x0024448948000005LL, // 64bit store gpr -> [rsp+d32] (sib required)
        X64_movqr   = 0xC08B480000000003LL, // 64bit mov r <- b
        X64_movqi   = 0xB848000000000002LL, // 64bit mov r <- imm64
        X64_movi    = 0xB840000000000002LL, // 32bit mov r <- immI
        X64_movqi32 = 0xC0C7480000000003LL, // 64bit mov r <- int64(immI)
        X64_movapsr = 0xC0280F4000000004LL, // 128bit mov xmm <- xmm
        X64_movqrx  = 0xC07E0F4866000005LL, // 64bit mov b <- xmm-r (reverses the usual r/b order)
        X64_movqxr  = 0xC06E0F4866000005LL, // 64bit mov b -> xmm-r
        X64_movqrm  = 0x00000000808B4807LL, // 64bit load r <- [b+d32]
        X64_movsdrr = 0xC0100F40F2000005LL, // 64bit mov xmm-r <- xmm-b (upper 64bits unchanged)
        X64_movsdrm = 0x80100F40F2000005LL, // 64bit load xmm-r <- [b+d32] (upper 64 cleared)
        X64_movsdmr = 0x80110F40F2000005LL, // 64bit store xmm-r -> [b+d32]
        X64_movssrm = 0x80100F40F3000005LL, // 32bit load xmm-r <- [b+d32] (upper 96 cleared)
        X64_movssmr = 0x80110F40F3000005LL, // 32bit store xmm-r -> [b+d32]
        X64_movsxdr = 0xC063480000000003LL, // sign extend i32 to i64 r = (int64)(int32) b
        X64_movzx8  = 0xC0B60F4000000004LL, // zero extend i8 to i64 r = (uint64)(uint8) b
        X64_movzx8m = 0x80B60F4000000004LL, // zero extend i8 load to i32 r <- [b+d32]
        X64_movzx16m= 0x80B70F4000000004LL, // zero extend i16 load to i32 r <- [b+d32]
        X64_movsx8m = 0x80BE0F4000000004LL, // sign extend i8 load to i32 r <- [b+d32]
        X64_movsx16m= 0x80BF0F4000000004LL, // sign extend i16 load to i32 r <- [b+d32]
        X64_neg     = 0xD8F7400000000003LL, // 32bit two's compliment b = -b
        X64_nop1    = 0x9000000000000001LL, // one byte NOP
        X64_nop2    = 0x9066000000000002LL, // two byte NOP
        X64_nop3    = 0x001F0F0000000003LL, // three byte NOP
        X64_nop4    = 0x00401F0F00000004LL, // four byte NOP
        X64_nop5    = 0x0000441F0F000005LL, // five byte NOP
        X64_nop6    = 0x0000441F0F660006LL, // six byte NOP
        X64_nop7    = 0x00000000801F0F07LL, // seven byte NOP
        X64_not     = 0xD0F7400000000003LL, // 32bit ones compliment b = ~b
        X64_orlrr   = 0xC00B400000000003LL, // 32bit or r |= b
        X64_orqrr   = 0xC00B480000000003LL, // 64bit or r |= b
        X64_popr    = 0x5840000000000002LL, // 64bit pop r <- [rsp++]
        X64_pushr   = 0x5040000000000002LL, // 64bit push r -> [--rsp]
        X64_pxor    = 0xC0EF0F4066000005LL, // 128bit xor xmm-r ^= xmm-b
        X64_ret     = 0xC300000000000001LL, // near return from called procedure
        X64_sete    = 0xC0940F4000000004LL, // set byte if equal (ZF == 1)
        X64_seto    = 0xC0900F4000000004LL, // set byte if overflow (OF == 1)
        X64_setc    = 0xC0920F4000000004LL, // set byte if carry (CF == 1)
        X64_setl    = 0xC09C0F4000000004LL, // set byte if less (int <) (SF != OF)
        X64_setle   = 0xC09E0F4000000004LL, // set byte if less or equal (int <=) (ZF == 1 || SF != OF)
        X64_setg    = 0xC09F0F4000000004LL, // set byte if greater (int >) (ZF == 0 && SF == OF)
        X64_setge   = 0xC09D0F4000000004LL, // set byte if greater or equal (int >=) (SF == OF)
        X64_seta    = 0xC0970F4000000004LL, // set byte if above (uint >) (CF == 0 && ZF == 0)
        X64_setae   = 0xC0930F4000000004LL, // set byte if above or equal (uint >=) (CF == 0)
        X64_setb    = 0xC0920F4000000004LL, // set byte if below (uint <) (CF == 1)
        X64_setbe   = 0xC0960F4000000004LL, // set byte if below or equal (uint <=) (ZF == 1 || CF == 1)
        X64_subsd   = 0xC05C0F40F2000005LL, // subtract scalar double r -= b
        X64_shl     = 0xE0D3400000000003LL, // 32bit left shift r <<= rcx
        X64_shlq    = 0xE0D3480000000003LL, // 64bit left shift r <<= rcx
        X64_shr     = 0xE8D3400000000003LL, // 32bit uint right shift r >>= rcx
        X64_shrq    = 0xE8D3480000000003LL, // 64bit uint right shift r >>= rcx
        X64_sar     = 0xF8D3400000000003LL, // 32bit int right shift r >>= rcx
        X64_sarq    = 0xF8D3480000000003LL, // 64bit int right shift r >>= rcx
        X64_shli    = 0x00E0C14000000004LL, // 32bit left shift r <<= imm8
        X64_shlqi   = 0x00E0C14800000004LL, // 64bit left shift r <<= imm8
        X64_sari    = 0x00F8C14000000004LL, // 32bit int right shift r >>= imm8
        X64_sarqi   = 0x00F8C14800000004LL, // 64bit int right shift r >>= imm8
        X64_shri    = 0x00E8C14000000004LL, // 32bit uint right shift r >>= imm8
        X64_shrqi   = 0x00E8C14800000004LL, // 64bit uint right shift r >>= imm8
        X64_subqrr  = 0xC02B480000000003LL, // 64bit sub r -= b
        X64_subrr   = 0xC02B400000000003LL, // 32bit sub r -= b
        X64_subqri  = 0xE881480000000003LL, // 64bit sub r -= int64(immI)
        X64_subqr8  = 0x00E8834800000004LL, // 64bit sub r -= int64(imm8)
        X64_ucomisd = 0xC02E0F4066000005LL, // unordered compare scalar double
        X64_xorqrr  = 0xC033480000000003LL, // 64bit xor r &= b
        X64_xorrr   = 0xC033400000000003LL, // 32bit xor r &= b
        X64_xorpd   = 0xC0570F4066000005LL, // 128bit xor xmm (two packed doubles)
        X64_xorps   = 0xC0570F4000000004LL, // 128bit xor xmm (four packed singles), one byte shorter
        X64_xorpsm  = 0x05570F4000000004LL, // 128bit xor xmm, [rip+disp32]
        X64_xorpsa  = 0x2504570F40000005LL, // 128bit xor xmm, [disp32]
        X64_inclmRAX= 0x00FF000000000002LL, // incl (%rax)
        X64_jmpx    = 0xC524ff4000000004LL, // jmp [d32+x*8]
        X64_jmpxb   = 0xC024ff4000000004LL, // jmp [b+x*8]

        X64_movqmi  = 0x80C7480000000003LL, // 32bit signed extended to 64-bit store imm -> qword ptr[b+disp32]
        X64_movlmi  = 0x80C7400000000003LL, // 32bit store imm -> dword ptr[b+disp32]
        X64_movsmi  = 0x80C7406600000004LL, // 16bit store imm -> word ptr[b+disp32]
        X64_movbmi  = 0x80C6400000000003LL, // 8bit store imm -> byte ptr[b+disp32]

        X86_and8r   = 0xC022000000000002LL, // and rl,rh
        X86_sete    = 0xC0940F0000000003LL, // no-rex version of X64_sete
        X86_setnp   = 0xC09B0F0000000003LL  // no-rex set byte if odd parity (ordered fcmp result) (PF == 0)
    };

    typedef uint32_t RegisterMask;

    static const RegisterMask GpRegs = 0xffff;
    static const RegisterMask FpRegs = 0xffff0000;
#ifdef _WIN64
    static const RegisterMask SavedRegs = 1<<REGNUM(RBX) | 1<<REGNUM(RSI) | 1<<REGNUM(RDI) |
                                          1<<REGNUM(R12) | 1<<REGNUM(R13) | 1<<REGNUM(R14) |
                                          1<<REGNUM(R15);
    static const int NumSavedRegs = 7; // rbx, rsi, rdi, r12-15
    static const int NumArgRegs = 4;
#else
    static const RegisterMask SavedRegs = 1<<REGNUM(RBX) | 1<<REGNUM(R12) | 1<<REGNUM(R13) |
                                          1<<REGNUM(R14) | 1<<REGNUM(R15);
    static const int NumSavedRegs = 5; // rbx, r12-15
    static const int NumArgRegs = 6;
#endif
    // Warning:  when talking about single byte registers, RSP/RBP/RSI/RDI are
    // actually synonyms for AH/CH/DH/BH.  So this value means "any
    // single-byte GpReg except AH/CH/DH/BH".
    static const RegisterMask SingleByteStoreRegs = GpRegs & ~(1<<REGNUM(RSP) | 1<<REGNUM(RBP) |
                                                               1<<REGNUM(RSI) | 1<<REGNUM(RDI));

    static inline bool IsFpReg(Register r) {
        return ((1<<REGNUM(r)) & FpRegs) != 0;
    }
    static inline bool IsGpReg(Register r) {
        return ((1<<REGNUM(r)) & GpRegs) != 0;
    }

    verbose_only( extern const char* regNames[]; )
    verbose_only( extern const char* gpRegNames32[]; )
    verbose_only( extern const char* gpRegNames8[]; )
    verbose_only( extern const char* gpRegNames8hi[]; )

    #define DECLARE_PLATFORM_STATS()
    #define DECLARE_PLATFORM_REGALLOC()

    #define DECLARE_PLATFORM_ASSEMBLER()                                    \
        const static Register argRegs[NumArgRegs], retRegs[1];              \
        void underrunProtect(ptrdiff_t bytes);                              \
        void nativePageReset();                                             \
        void nativePageSetup();                                             \
        bool hardenNopInsertion(const Config& /*c*/) { return false; }      \
        void asm_qbinop(LIns*);                                             \
        void MR(Register, Register);\
        void JMP(NIns*);\
        void JMPl(NIns*);\
        void emit(uint64_t op);\
        void emit8(uint64_t op, int64_t val);\
        void emit_target8(size_t underrun, uint64_t op, NIns* target);\
        void emit_target32(size_t underrun, uint64_t op, NIns* target);\
        void emit_target64(size_t underrun, uint64_t op, NIns* target); \
        void emitrr(uint64_t op, Register r, Register b);\
        void emitrxb(uint64_t op, Register r, Register x, Register b);\
        void emitxb(uint64_t op, Register x, Register b) { emitrxb(op, RZero, x, b); }\
        void emitrr8(uint64_t op, Register r, Register b);\
        void emitr(uint64_t op, Register b) { emitrr(op, RZero, b); }\
        void emitr8(uint64_t op, Register b) { emitrr8(op, RZero, b); }\
        void emitprr(uint64_t op, Register r, Register b);\
        void emitrm8(uint64_t op, Register r, int32_t d, Register b);\
        void emitrm(uint64_t op, Register r, int32_t d, Register b);\
        void emitrm_wide(uint64_t op, Register r, int32_t d, Register b);\
        uint64_t emit_disp32(uint64_t op, int32_t d);\
        void emitprm(uint64_t op, Register r, int32_t d, Register b);\
        void emitrr_imm(uint64_t op, Register r, Register b, int32_t imm);\
        void emitr_imm64(uint64_t op, Register r, uint64_t imm);\
        void emitrm_imm32(uint64_t op, Register r, int32_t d, int32_t imm);\
        void emitprm_imm16(uint64_t op, Register r, int32_t d, int32_t imm);\
        void emitrm_imm8(uint64_t op, Register r, int32_t d, int32_t imm);\
        void emitrxb_imm(uint64_t op, Register r, Register x, Register b, int32_t imm);\
        void emitr_imm(uint64_t op, Register r, int32_t imm) { emitrr_imm(op, RZero, r, imm); }\
        void emitr_imm8(uint64_t op, Register b, int32_t imm8);\
        void emitxm_abs(uint64_t op, Register r, int32_t addr32);\
        void emitxm_rel(uint64_t op, Register r, NIns* addr64);\
        bool isTargetWithinS8(NIns* target);\
        bool isTargetWithinS32(NIns* target);\
        void asm_immi(Register r, int32_t v, bool canClobberCCs);\
        void asm_immq(Register r, uint64_t v, bool canClobberCCs);\
        void asm_immd(Register r, uint64_t v, bool canClobberCCs);\
        void asm_regarg(ArgType, LIns*, Register);\
        void asm_stkarg(ArgType, LIns*, int);\
        void asm_shift(LIns*);\
        void asm_shift_imm(LIns*);\
        void asm_arith_imm(LIns*);\
        void beginOp1Regs(LIns *ins, RegisterMask allow, Register &rr, Register &ra);\
        void beginOp2Regs(LIns *ins, RegisterMask allow, Register &rr, Register &ra, Register &rb);\
        void endOpRegs(LIns *ins, Register rr, Register ra);\
        void beginLoadRegs(LIns *ins, RegisterMask allow, Register &rr, int32_t &d, Register &rb);\
        void endLoadRegs(LIns *ins);\
        void dis(NIns *p, int bytes);\
        void asm_cmp(LIns*);\
        void asm_cmpi(LIns*);\
        void asm_cmpi_imm(LIns*);\
        void asm_cmpd(LIns*);\
        NIns* asm_branch_helper(bool, LIns*, NIns*);\
        NIns* asm_branchi_helper(bool, LIns*, NIns*);\
        NIns* asm_branchd_helper(bool, LIns*, NIns*);\
        void asm_div(LIns *ins);\
        void asm_div_mod(LIns *ins);\
        int max_stk_used;\
        void PUSHR(Register r);\
        void POPR(Register r);\
        void NOT(Register r);\
        void NEG(Register r);\
        void IDIV(Register r);\
        void SHR(Register r);\
        void SAR(Register r);\
        void SHL(Register r);\
        void SHRQ(Register r);\
        void SARQ(Register r);\
        void SHLQ(Register r);\
        void SHRI(Register r, int i);\
        void SARI(Register r, int i);\
        void SHLI(Register r, int i);\
        void SHRQI(Register r, int i);\
        void SARQI(Register r, int i);\
        void SHLQI(Register r, int i);\
        void SETE(Register r);\
        void SETL(Register r);\
        void SETLE(Register r);\
        void SETG(Register r);\
        void SETGE(Register r);\
        void SETB(Register r);\
        void SETBE(Register r);\
        void SETA(Register r);\
        void SETAE(Register r);\
        void SETO(Register r);\
        void ADDRR(Register l, Register r);\
        void SUBRR(Register l, Register r);\
        void ANDRR(Register l, Register r);\
        void ORLRR(Register l, Register r);\
        void XORRR(Register l, Register r);\
        void IMUL(Register l, Register r);\
        void CMPLR(Register l, Register r);\
        void MOVLR(Register l, Register r);\
        void ADDQRR(Register l, Register r);\
        void SUBQRR(Register l, Register r);\
        void ANDQRR(Register l, Register r);\
        void ORQRR(Register l, Register r);\
        void XORQRR(Register l, Register r);\
        void CMPQR(Register l, Register r);\
        void MOVQR(Register l, Register r);\
        void MOVAPSR(Register l, Register r);\
        void CMOVNO(Register l, Register r);\
        void CMOVNE(Register l, Register r);\
        void CMOVNL(Register l, Register r);\
        void CMOVNLE(Register l, Register r);\
        void CMOVNG(Register l, Register r);\
        void CMOVNGE(Register l, Register r);\
        void CMOVNB(Register l, Register r);\
        void CMOVNBE(Register l, Register r);\
        void CMOVNA(Register l, Register r);\
        void CMOVNAE(Register l, Register r);\
        void CMOVQNO(Register l, Register r);\
        void CMOVQNE(Register l, Register r);\
        void CMOVQNL(Register l, Register r);\
        void CMOVQNLE(Register l, Register r);\
        void CMOVQNG(Register l, Register r);\
        void CMOVQNGE(Register l, Register r);\
        void CMOVQNB(Register l, Register r);\
        void CMOVQNBE(Register l, Register r);\
        void CMOVQNA(Register l, Register r);\
        void CMOVQNAE(Register l, Register r);\
        void MOVSXDR(Register l, Register r);\
        void MOVZX8(Register l, Register r);\
        void XORPS(Register r);\
        void XORPS(Register l, Register r);\
        void DIVSD(Register l, Register r);\
        void MULSD(Register l, Register r);\
        void ADDSD(Register l, Register r);\
        void SUBSD(Register l, Register r);\
        void CVTSQ2SD(Register l, Register r);\
        void CVTSI2SD(Register l, Register r);\
        void CVTSS2SD(Register l, Register r);\
        void CVTSD2SS(Register l, Register r);\
        void CVTSD2SI(Register l, Register r);\
        void CVTTSD2SI(Register l, Register r);\
        void UCOMISD(Register l, Register r);\
        void MOVQRX(Register l, Register r);\
        void MOVQXR(Register l, Register r);\
        void MOVI(Register r, int32_t i32);\
        void ADDLRI(Register r, int32_t i32);\
        void SUBLRI(Register r, int32_t i32);\
        void ANDLRI(Register r, int32_t i32);\
        void ORLRI(Register r, int32_t i32);\
        void XORLRI(Register r, int32_t i32);\
        void CMPLRI(Register r, int32_t i32);\
        void ADDQRI(Register r, int32_t i32);\
        void SUBQRI(Register r, int32_t i32);\
        void ANDQRI(Register r, int32_t i32);\
        void ORQRI(Register r, int32_t i32);\
        void XORQRI(Register r, int32_t i32);\
        void CMPQRI(Register r, int32_t i32);\
        void MOVQI32(Register r, int32_t i32);\
        void ADDLR8(Register r, int32_t i8);\
        void SUBLR8(Register r, int32_t i8);\
        void ANDLR8(Register r, int32_t i8);\
        void ORLR8(Register r, int32_t i8);\
        void XORLR8(Register r, int32_t i8);\
        void CMPLR8(Register r, int32_t i8);\
        void ADDQR8(Register r, int32_t i8);\
        void SUBQR8(Register r, int32_t i8);\
        void ANDQR8(Register r, int32_t i8);\
        void ORQR8(Register r, int32_t i8);\
        void XORQR8(Register r, int32_t i8);\
        void CMPQR8(Register r, int32_t i8);\
        void IMULI(Register l, Register r, int32_t i32);\
        void MOVQI(Register r, uint64_t u64);\
        void LEARIP(Register r, int32_t d);\
        void LEALRM(Register r, int d, Register b);\
        void LEAQRM(Register r, int d, Register b);\
        void MOVLRM(Register r, int d, Register b);\
        void MOVQRM(Register r, int d, Register b);\
        void MOVBMR(Register r, int d, Register b);\
        void MOVSMR(Register r, int d, Register b);\
        void MOVLMR(Register r, int d, Register b);\
        void MOVQMR(Register r, int d, Register b);\
        void MOVZX8M(Register r, int d, Register b);\
        void MOVZX16M(Register r, int d, Register b);\
        void MOVSX8M(Register r, int d, Register b);\
        void MOVSX16M(Register r, int d, Register b);\
        void MOVSDRM(Register r, int d, Register b);\
        void MOVSDMR(Register r, int d, Register b);\
        void MOVSSMR(Register r, int d, Register b);\
        void MOVSSRM(Register r, int d, Register b);\
        void JMP8(size_t n, NIns* t);\
        void JMP32(size_t n, NIns* t);\
        void JMP64(size_t n, NIns* t);\
        void JMPX(Register indexreg, NIns** table);\
        void JMPXB(Register indexreg, Register tablereg);\
        void JO(size_t n, NIns* t);\
        void JE(size_t n, NIns* t);\
        void JL(size_t n, NIns* t);\
        void JLE(size_t n, NIns* t);\
        void JG(size_t n, NIns* t);\
        void JGE(size_t n, NIns* t);\
        void JB(size_t n, NIns* t);\
        void JBE(size_t n, NIns* t);\
        void JA(size_t n, NIns* t);\
        void JAE(size_t n, NIns* t);\
        void JP(size_t n, NIns* t);\
        void JNO(size_t n, NIns* t);\
        void JNE(size_t n, NIns* t);\
        void JNL(size_t n, NIns* t);\
        void JNLE(size_t n, NIns* t);\
        void JNG(size_t n, NIns* t);\
        void JNGE(size_t n, NIns* t);\
        void JNB(size_t n, NIns* t);\
        void JNBE(size_t n, NIns* t);\
        void JNA(size_t n, NIns* t);\
        void JNAE(size_t n, NIns* t);\
        void JO8(size_t n, NIns* t);\
        void JE8(size_t n, NIns* t);\
        void JL8(size_t n, NIns* t);\
        void JLE8(size_t n, NIns* t);\
        void JG8(size_t n, NIns* t);\
        void JGE8(size_t n, NIns* t);\
        void JB8(size_t n, NIns* t);\
        void JBE8(size_t n, NIns* t);\
        void JA8(size_t n, NIns* t);\
        void JAE8(size_t n, NIns* t);\
        void JP8(size_t n, NIns* t);\
        void JNO8(size_t n, NIns* t);\
        void JNE8(size_t n, NIns* t);\
        void JNL8(size_t n, NIns* t);\
        void JNLE8(size_t n, NIns* t);\
        void JNG8(size_t n, NIns* t);\
        void JNGE8(size_t n, NIns* t);\
        void JNB8(size_t n, NIns* t);\
        void JNBE8(size_t n, NIns* t);\
        void JNA8(size_t n, NIns* t);\
        void JNAE8(size_t n, NIns* t);\
        void CALL(size_t n, NIns* t);\
        void CALLRAX();\
        void RET();\
        void MOVQSPR(int d, Register r);\
        void XORPSA(Register r, int32_t i32);\
        void XORPSM(Register r, NIns* a64);\
        void X86_AND8R(Register r);\
        void X86_SETNP(Register r);\
        void X86_SETE(Register r);\
        void MOVQMI(Register base, int disp, int32_t imm32); \
        void MOVLMI(Register base, int disp, int32_t imm32); \
        void MOVSMI(Register base, int disp, int32_t imm16); \
        void MOVBMI(Register base, int disp, int32_t imm8); \

    const int LARGEST_UNDERRUN_PROT = 32;  // largest value passed to underrunProtect

    typedef uint8_t NIns;

    // Bytes of icache to flush after Assembler::patch
    const size_t LARGEST_BRANCH_PATCH = 16 * sizeof(NIns);

} // namespace nanojit

#endif // __nanojit_NativeX64__