This file is indexed.

/usr/include/js/LIR.h is in libmozjs185-dev 1.8.5-1.0.0+dfsg-4.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
/* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4 -*- */
/* vi: set ts=4 sw=4 expandtab: (add to ~/.vimrc: set modeline modelines=5) */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is [Open Source Virtual Machine].
 *
 * The Initial Developer of the Original Code is
 * Adobe System Incorporated.
 * Portions created by the Initial Developer are Copyright (C) 2004-2007
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Adobe AS3 Team
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef __nanojit_LIR__
#define __nanojit_LIR__

namespace nanojit
{
    enum LOpcode
#if defined(_MSC_VER) && _MSC_VER >= 1400
#pragma warning(disable:4480) // nonstandard extension used: specifying underlying type for enum
          : unsigned
#endif
    {
#define OP___(op, number, repKind, retType, isCse) \
        LIR_##op = (number),
#include "LIRopcode.tbl"
        LIR_sentinel,
#undef OP___

#ifdef NANOJIT_64BIT
#  define PTR_SIZE(a,b)  b
#else
#  define PTR_SIZE(a,b)  a
#endif

        // Pointer-sized synonyms.

        LIR_paramp  = PTR_SIZE(LIR_parami,  LIR_paramq),

        LIR_retp    = PTR_SIZE(LIR_reti,    LIR_retq),

        LIR_livep   = PTR_SIZE(LIR_livei,   LIR_liveq),

        LIR_ldp     = PTR_SIZE(LIR_ldi,     LIR_ldq),

        LIR_stp     = PTR_SIZE(LIR_sti,     LIR_stq),

        LIR_callp   = PTR_SIZE(LIR_calli,   LIR_callq),

        LIR_eqp     = PTR_SIZE(LIR_eqi,     LIR_eqq),
        LIR_ltp     = PTR_SIZE(LIR_lti,     LIR_ltq),
        LIR_gtp     = PTR_SIZE(LIR_gti,     LIR_gtq),
        LIR_lep     = PTR_SIZE(LIR_lei,     LIR_leq),
        LIR_gep     = PTR_SIZE(LIR_gei,     LIR_geq),
        LIR_ltup    = PTR_SIZE(LIR_ltui,    LIR_ltuq),
        LIR_gtup    = PTR_SIZE(LIR_gtui,    LIR_gtuq),
        LIR_leup    = PTR_SIZE(LIR_leui,    LIR_leuq),
        LIR_geup    = PTR_SIZE(LIR_geui,    LIR_geuq),

        LIR_addp    = PTR_SIZE(LIR_addi,    LIR_addq),
        LIR_subp    = PTR_SIZE(LIR_subi,    LIR_subq),
        LIR_addjovp = PTR_SIZE(LIR_addjovi, LIR_addjovq),

        LIR_andp    = PTR_SIZE(LIR_andi,    LIR_andq),
        LIR_orp     = PTR_SIZE(LIR_ori,     LIR_orq),
        LIR_xorp    = PTR_SIZE(LIR_xori,    LIR_xorq),

        LIR_lshp    = PTR_SIZE(LIR_lshi,    LIR_lshq),
        LIR_rshp    = PTR_SIZE(LIR_rshi,    LIR_rshq),
        LIR_rshup   = PTR_SIZE(LIR_rshui,   LIR_rshuq),

        LIR_cmovp   = PTR_SIZE(LIR_cmovi,   LIR_cmovq)
    };

    // 32-bit integer comparisons must be contiguous, as must 64-bit integer
    // comparisons and 64-bit float comparisons.
    NanoStaticAssert(LIR_eqi + 1 == LIR_lti  &&
                     LIR_eqi + 2 == LIR_gti  &&
                     LIR_eqi + 3 == LIR_lei  &&
                     LIR_eqi + 4 == LIR_gei  &&
                     LIR_eqi + 5 == LIR_ltui &&
                     LIR_eqi + 6 == LIR_gtui &&
                     LIR_eqi + 7 == LIR_leui &&
                     LIR_eqi + 8 == LIR_geui);
#ifdef NANOJIT_64BIT
    NanoStaticAssert(LIR_eqq + 1 == LIR_ltq  &&
                     LIR_eqq + 2 == LIR_gtq  &&
                     LIR_eqq + 3 == LIR_leq  &&
                     LIR_eqq + 4 == LIR_geq  &&
                     LIR_eqq + 5 == LIR_ltuq &&
                     LIR_eqq + 6 == LIR_gtuq &&
                     LIR_eqq + 7 == LIR_leuq &&
                     LIR_eqq + 8 == LIR_geuq);
#endif
    NanoStaticAssert(LIR_eqd + 1 == LIR_ltd &&
                     LIR_eqd + 2 == LIR_gtd &&
                     LIR_eqd + 3 == LIR_led &&
                     LIR_eqd + 4 == LIR_ged);

    // Various opcodes must be changeable to their opposite with op^1
    // (although we use invertXyz() when possible, ie. outside static
    // assertions).
    NanoStaticAssert((LIR_jt^1) == LIR_jf && (LIR_jf^1) == LIR_jt);

    NanoStaticAssert((LIR_xt^1) == LIR_xf && (LIR_xf^1) == LIR_xt);

    NanoStaticAssert((LIR_lti^1)  == LIR_gti  && (LIR_gti^1)  == LIR_lti);
    NanoStaticAssert((LIR_lei^1)  == LIR_gei  && (LIR_gei^1)  == LIR_lei);
    NanoStaticAssert((LIR_ltui^1) == LIR_gtui && (LIR_gtui^1) == LIR_ltui);
    NanoStaticAssert((LIR_leui^1) == LIR_geui && (LIR_geui^1) == LIR_leui);

#ifdef NANOJIT_64BIT
    NanoStaticAssert((LIR_ltq^1)  == LIR_gtq  && (LIR_gtq^1)  == LIR_ltq);
    NanoStaticAssert((LIR_leq^1)  == LIR_geq  && (LIR_geq^1)  == LIR_leq);
    NanoStaticAssert((LIR_ltuq^1) == LIR_gtuq && (LIR_gtuq^1) == LIR_ltuq);
    NanoStaticAssert((LIR_leuq^1) == LIR_geuq && (LIR_geuq^1) == LIR_leuq);
#endif

    NanoStaticAssert((LIR_ltd^1) == LIR_gtd && (LIR_gtd^1) == LIR_ltd);
    NanoStaticAssert((LIR_led^1) == LIR_ged && (LIR_ged^1) == LIR_led);


    struct GuardRecord;
    struct SideExit;

    enum AbiKind {
        ABI_FASTCALL,
        ABI_THISCALL,
        ABI_STDCALL,
        ABI_CDECL
    };

    // This is much the same as LTy, but we need to distinguish signed and
    // unsigned 32-bit ints so that they will be extended to 64-bits correctly
    // on 64-bit platforms.
    //
    // All values must fit into three bits.  See CallInfo for details.
    enum ArgType {
        ARGTYPE_V  = 0,     // void
        ARGTYPE_I  = 1,     // int32_t
        ARGTYPE_UI = 2,     // uint32_t
#ifdef NANOJIT_64BIT
        ARGTYPE_Q  = 3,     // uint64_t
#endif
        ARGTYPE_D  = 4,     // double

        // aliases
        ARGTYPE_P = PTR_SIZE(ARGTYPE_I, ARGTYPE_Q), // pointer
        ARGTYPE_B = ARGTYPE_I                       // bool
    };

    enum IndirectCall {
        CALL_INDIRECT = 0
    };

    //-----------------------------------------------------------------------
    // Aliasing
    // --------
    // *Aliasing* occurs when a single memory location can be accessed through
    // multiple names.  For example, consider this code:
    //
    //   ld a[0]
    //   sti b[0]
    //   ld a[0]
    //
    // In general, it's possible that a[0] and b[0] may refer to the same
    // memory location.  This means, for example, that you cannot safely
    // perform CSE on the two loads.  However, if you know that 'a' cannot be
    // an alias of 'b' (ie. the two loads do not alias with the store) then
    // you can safely perform CSE.
    //
    // Access regions
    // --------------
    // Doing alias analysis precisely is difficult.  But it turns out that
    // keeping track of aliasing at a coarse level is enough to help with many
    // optimisations.  So we conceptually divide the memory that is accessible
    // from LIR into a small number of "access regions" (aka. "Acc").  An
    // access region may be non-contiguous.  No two access regions can
    // overlap.  The union of all access regions covers all memory accessible
    // from LIR.
    //
    // In general a (static) load or store may be executed more than once, and
    // thus may access multiple regions;  however, in practice almost all
    // loads and stores will obviously access only a single region.  A
    // function called from LIR may load and/or store multiple access regions
    // (even if executed only once).
    //
    // If two loads/stores/calls are known to not access the same region(s),
    // then they do not alias.
    //
    // All regions are defined by the embedding.  It makes sense to add new
    // embedding-specific access regions when doing so will help with one or
    // more optimisations.
    //
    // Access region sets and instruction markings
    // -------------------------------------------
    // Each load/store is marked with an "access region set" (aka. "AccSet"),
    // which is a set of one or more access regions.  This indicates which
    // parts of LIR-accessible memory the load/store may touch.
    //
    // Each function called from LIR is also marked with an access region set
    // for memory stored to by the function.  (We could also have a marking
    // for memory loads done by the function, but there's no need at the
    // moment.)  These markings apply to the function itself, not the call
    // site, ie. they're not context-sensitive.
    //
    // These load/store/call markings MUST BE ACCURATE -- if not then invalid
    // optimisations might occur that change the meaning of the code.
    // However, they can safely be imprecise (ie. conservative), ie. a
    // load/store/call can be marked with an access region set that is a
    // superset of the actual access region set.  Such imprecision is safe but
    // may reduce optimisation opportunities.
    //
    // Optimisations that use access region info
    // -----------------------------------------
    // Currently only CseFilter uses this, and only for determining whether
    // loads can be CSE'd.  Note that CseFilter treats loads that are marked
    // with a single access region precisely, but all loads marked with
    // multiple access regions get lumped together.  So if you can't mark a
    // load with a single access region, you might as well use ACC_LOAD_ANY.
    //-----------------------------------------------------------------------

    // An access region set is represented as a bitset.  Using a uint32_t
    // restricts us to at most 32 alias regions for the moment.  This could be
    // expanded to a uint64_t easily if needed.
    typedef uint32_t AccSet;
    static const int NUM_ACCS = sizeof(AccSet) * 8;

    // Some common (non-singleton) access region sets.  ACCSET_NONE does not make
    // sense for loads or stores (which must access at least one region), it
    // only makes sense for calls.
    //
    static const AccSet ACCSET_NONE      = 0x0;
    static const AccSet ACCSET_ALL       = 0xffffffff;
    static const AccSet ACCSET_LOAD_ANY  = ACCSET_ALL;      // synonym
    static const AccSet ACCSET_STORE_ANY = ACCSET_ALL;      // synonym

    inline bool isSingletonAccSet(AccSet accSet) {
        // This is a neat way of testing if a value has only one bit set.
        return (accSet & (accSet - 1)) == 0;
    }

    // Full AccSets don't fit into load and store instructions.  But
    // load/store AccSets almost always contain a single access region.  We
    // take advantage of this to create a compressed AccSet, MiniAccSet, that
    // does fit.
    //
    // The 32 single-region AccSets get compressed into a number in the range
    // 0..31 (according to the position of the set bit), and all other
    // (multi-region) AccSets get converted into MINI_ACCSET_MULTIPLE.  So the
    // representation is lossy in the latter case, but that case is rare for
    // loads/stores.  We use a full AccSet for the storeAccSets of calls, for
    // which multi-region AccSets are common.
    //
    // We wrap the uint8_t inside a struct to avoid the possiblity of subtle
    // bugs caused by mixing up AccSet and MiniAccSet, which is easy to do.
    // However, the struct gets padded inside LInsLd in an inconsistent way on
    // Windows, so we actually store a MiniAccSetVal inside LInsLd.  Sigh.
    // But we use MiniAccSet everywhere else.
    //
    typedef uint8_t MiniAccSetVal;
    struct MiniAccSet { MiniAccSetVal val; };
    static const MiniAccSet MINI_ACCSET_MULTIPLE = { 99 };

    static MiniAccSet compressAccSet(AccSet accSet) {
        if (isSingletonAccSet(accSet)) {
            MiniAccSet ret = { uint8_t(msbSet32(accSet)) };
            return ret;
        }

        // If we got here, it must be a multi-region AccSet.
        return MINI_ACCSET_MULTIPLE;
    }

    static AccSet decompressMiniAccSet(MiniAccSet miniAccSet) {
        return (miniAccSet.val == MINI_ACCSET_MULTIPLE.val) ? ACCSET_ALL : (1 << miniAccSet.val);
    }

    // The LoadQual affects how a load can be optimised:
    //
    // - CONST: These loads are guaranteed to always return the same value
    //   during a single execution of a fragment (but the value is allowed to
    //   change between executions of the fragment).  This means that the
    //   location is never stored to by the LIR, and is never modified by an
    //   external entity while the fragment is running.
    //
    // - NORMAL: These loads may be stored to by the LIR, but are never
    //   modified by an external entity while the fragment is running.
    //
    // - VOLATILE: These loads may be stored to by the LIR, and may be
    //   modified by an external entity while the fragment is running.
    //
    // This gives a lattice with the ordering:  CONST < NORMAL < VOLATILE.
    // As usual, it's safe to mark a load with a value higher (less precise)
    // that actual, but it may result in fewer optimisations occurring.
    //
    // Generally CONST loads are highly amenable to optimisation (eg. CSE),
    // VOLATILE loads are entirely unoptimisable, and NORMAL loads are in
    // between and require some alias analysis to optimise.
    //
    // Note that CONST has a stronger meaning to "const" in C and C++;  in C
    // and C++ a "const" variable may be modified by an external entity, such
    // as hardware.  Hence "const volatile" makes sense in C and C++, but
    // CONST+VOLATILE doesn't make sense in LIR.
    //
    // Note also that a 2-bit bitfield in LInsLd is used to hold LoadQual
    // values, so you can one add one more value without expanding it.
    //
    enum LoadQual {
        LOAD_CONST    = 0,
        LOAD_NORMAL   = 1,
        LOAD_VOLATILE = 2
    };

    struct CallInfo
    {
    private:
        // In CallInfo::_typesig, each entry is three bits.
        static const int TYPESIG_FIELDSZB = 3;
        static const int TYPESIG_FIELDMASK = 7;

    public:
        uintptr_t   _address;
        uint32_t    _typesig:27;     // 9 3-bit fields indicating arg type, by ARGTYPE above (including ret type): a1 a2 a3 a4 a5 ret
        AbiKind     _abi:3;
        uint32_t    _isPure:1;      // _isPure=1 means no side-effects, result only depends on args
        AccSet      _storeAccSet;   // access regions stored by the function
        verbose_only ( const char* _name; )

        // The following encode 'r func()' through to 'r func(a1, a2, a3, a4, a5, a6, a7, a8)'.
        static inline uint32_t typeSig0(ArgType r) {
            return r;
        }
        static inline uint32_t typeSig1(ArgType r, ArgType a1) {
            return a1 << TYPESIG_FIELDSZB*1 | typeSig0(r);
        }
        static inline uint32_t typeSig2(ArgType r, ArgType a1, ArgType a2) {
            return a1 << TYPESIG_FIELDSZB*2 | typeSig1(r, a2);
        }
        static inline uint32_t typeSig3(ArgType r, ArgType a1, ArgType a2, ArgType a3) {
            return a1 << TYPESIG_FIELDSZB*3 | typeSig2(r, a2, a3);
        }
        static inline uint32_t typeSig4(ArgType r, ArgType a1, ArgType a2, ArgType a3, ArgType a4) {
            return a1 << TYPESIG_FIELDSZB*4 | typeSig3(r, a2, a3, a4);
        }
        static inline uint32_t typeSig5(ArgType r,  ArgType a1, ArgType a2, ArgType a3,
                                 ArgType a4, ArgType a5) {
            return a1 << TYPESIG_FIELDSZB*5 | typeSig4(r, a2, a3, a4, a5);
        }
        static inline uint32_t typeSig6(ArgType r, ArgType a1, ArgType a2, ArgType a3,
                                 ArgType a4, ArgType a5, ArgType a6) {
            return a1 << TYPESIG_FIELDSZB*6 | typeSig5(r, a2, a3, a4, a5, a6);
        }
        static inline uint32_t typeSig7(ArgType r,  ArgType a1, ArgType a2, ArgType a3,
                                 ArgType a4, ArgType a5, ArgType a6, ArgType a7) {
            return a1 << TYPESIG_FIELDSZB*7 | typeSig6(r, a2, a3, a4, a5, a6, a7);
        }
        static inline uint32_t typeSig8(ArgType r,  ArgType a1, ArgType a2, ArgType a3, ArgType a4,
                                 ArgType a5, ArgType a6, ArgType a7, ArgType a8) {
            return a1 << TYPESIG_FIELDSZB*8 | typeSig7(r, a2, a3, a4, a5, a6, a7, a8);
        }
        // Encode 'r func(a1, ..., aN))'
        static inline uint32_t typeSigN(ArgType r, int N, ArgType a[]) {
            uint32_t typesig = r;
            for (int i = 0; i < N; i++) {
                typesig |= a[i] << TYPESIG_FIELDSZB*(N-i);
            }
            return typesig;
        }

        uint32_t count_args() const;
        uint32_t count_int32_args() const;
        // Nb: uses right-to-left order, eg. sizes[0] is the size of the right-most arg.
        // XXX: See bug 525815 for fixing this.
        uint32_t getArgTypes(ArgType* types) const;

        inline ArgType returnType() const {
            return ArgType(_typesig & TYPESIG_FIELDMASK);
        }

        inline bool isIndirect() const {
            return _address < 256;
        }
    };

    /*
     * Record for extra data used to compile switches as jump tables.
     */
    struct SwitchInfo
    {
        NIns**      table;       // Jump table; a jump address is NIns*
        uint32_t    count;       // Number of table entries
        // Index value at last execution of the switch. The index value
        // is the offset into the jump table. Thus it is computed as
        // (switch expression) - (lowest case value).
        uint32_t    index;
    };

    // Array holding the 'isCse' field from LIRopcode.tbl.
    extern const int8_t isCses[];       // cannot be uint8_t, some values are negative

    inline bool isCseOpcode(LOpcode op) {
        NanoAssert(isCses[op] != -1);   // see LIRopcode.tbl to understand this
        return isCses[op] == 1;
    }
    inline bool isLiveOpcode(LOpcode op) {
        return
#if defined NANOJIT_64BIT
               op == LIR_liveq ||
#endif
               op == LIR_livei || op == LIR_lived;
    }
    inline bool isRetOpcode(LOpcode op) {
        return
#if defined NANOJIT_64BIT
            op == LIR_retq ||
#endif
            op == LIR_reti || op == LIR_retd;
    }
    inline bool isCmovOpcode(LOpcode op) {
        return
#if defined NANOJIT_64BIT
            op == LIR_cmovq ||
#endif
            op == LIR_cmovi ||
            op == LIR_cmovd;
    }
    inline bool isCmpIOpcode(LOpcode op) {
        return LIR_eqi <= op && op <= LIR_geui;
    }
    inline bool isCmpSIOpcode(LOpcode op) {
        return LIR_eqi <= op && op <= LIR_gei;
    }
    inline bool isCmpUIOpcode(LOpcode op) {
        return LIR_eqi == op || (LIR_ltui <= op && op <= LIR_geui);
    }
#ifdef NANOJIT_64BIT
    inline bool isCmpQOpcode(LOpcode op) {
        return LIR_eqq <= op && op <= LIR_geuq;
    }
    inline bool isCmpSQOpcode(LOpcode op) {
        return LIR_eqq <= op && op <= LIR_geq;
    }
    inline bool isCmpUQOpcode(LOpcode op) {
        return LIR_eqq == op || (LIR_ltuq <= op && op <= LIR_geuq);
    }
#endif
    inline bool isCmpDOpcode(LOpcode op) {
        return LIR_eqd <= op && op <= LIR_ged;
    }
    inline bool isCmpOpcode(LOpcode op) {
        return isCmpIOpcode(op) ||
#if defined NANOJIT_64BIT
               isCmpQOpcode(op) ||
#endif
               isCmpDOpcode(op);
    }

    inline LOpcode invertCondJmpOpcode(LOpcode op) {
        NanoAssert(op == LIR_jt || op == LIR_jf);
        return LOpcode(op ^ 1);
    }
    inline LOpcode invertCondGuardOpcode(LOpcode op) {
        NanoAssert(op == LIR_xt || op == LIR_xf);
        return LOpcode(op ^ 1);
    }
    inline LOpcode invertCmpOpcode(LOpcode op) {
        NanoAssert(isCmpOpcode(op));
        return LOpcode(op ^ 1);
    }

    inline LOpcode getCallOpcode(const CallInfo* ci) {
        LOpcode op = LIR_callp;
        switch (ci->returnType()) {
        case ARGTYPE_V: op = LIR_callv; break;
        case ARGTYPE_I:
        case ARGTYPE_UI: op = LIR_calli; break;
#ifdef NANOJIT_64BIT
        case ARGTYPE_Q: op = LIR_callq; break;
#endif
        case ARGTYPE_D: op = LIR_calld; break;
        default:        NanoAssert(0);  break;
        }
        return op;
    }

    LOpcode arithOpcodeD2I(LOpcode op);
#ifdef NANOJIT_64BIT
    LOpcode cmpOpcodeI2Q(LOpcode op);
#endif
    LOpcode cmpOpcodeD2I(LOpcode op);
    LOpcode cmpOpcodeD2UI(LOpcode op);

    // Array holding the 'repKind' field from LIRopcode.tbl.
    extern const uint8_t repKinds[];

    enum LTy {
        LTy_V,  // void: no value/no type
        LTy_I,  // int:  32-bit integer
#ifdef NANOJIT_64BIT
        LTy_Q,  // quad: 64-bit integer
#endif
        LTy_D,  // double: 64-bit float

        LTy_P  = PTR_SIZE(LTy_I, LTy_Q)   // word-sized integer
    };

    // Array holding the 'retType' field from LIRopcode.tbl.
    extern const LTy retTypes[];

    inline RegisterMask rmask(Register r)
    {
        return RegisterMask(1) << REGNUM(r);
    }

    //-----------------------------------------------------------------------
    // Low-level instructions.  This is a bit complicated, because we have a
    // variable-width representation to minimise space usage.
    //
    // - Instruction size is always an integral multiple of word size.
    //
    // - Every instruction has at least one word, holding the opcode and the
    //   reservation info ("SharedFields").  That word is in class LIns.
    //
    // - Beyond that, most instructions have 1, 2 or 3 extra words.  These
    //   extra words are in classes LInsOp1, LInsOp2, etc (collectively called
    //   "LInsXYZ" in what follows).  Each LInsXYZ class also contains an LIns,
    //   accessible by the 'ins' member, which holds the LIns data.
    //
    // - LIR is written forward, but read backwards.  When reading backwards,
    //   in order to find the opcode, it must be in a predictable place in the
    //   LInsXYZ isn't affected by instruction width.  Therefore, the LIns
    //   word (which contains the opcode) is always the *last* word in an
    //   instruction.
    //
    // - Each instruction is created by casting pre-allocated bytes from a
    //   LirBuffer to the LInsXYZ type.  Therefore there are no constructors
    //   for LIns or LInsXYZ.
    //
    // - The standard handle for an instruction is a LIns*.  This actually
    //   points to the LIns word, ie. to the final word in the instruction.
    //   This is a bit odd, but it allows the instruction's opcode to be
    //   easily accessed.  Once you've looked at the opcode and know what kind
    //   of instruction it is, if you want to access any of the other words,
    //   you need to use toLInsXYZ(), which takes the LIns* and gives you an
    //   LInsXYZ*, ie. the pointer to the actual start of the instruction's
    //   bytes.  From there you can access the instruction-specific extra
    //   words.
    //
    // - However, from outside class LIns, LInsXYZ isn't visible, nor is
    //   toLInsXYZ() -- from outside LIns, all LIR instructions are handled
    //   via LIns pointers and get/set methods are used for all LIns/LInsXYZ
    //   accesses.  In fact, all data members in LInsXYZ are private and can
    //   only be accessed by LIns, which is a friend class.  The only thing
    //   anyone outside LIns can do with a LInsXYZ is call getLIns().
    //
    // - An example Op2 instruction and the likely pointers to it (each line
    //   represents a word, and pointers to a line point to the start of the
    //   word on that line):
    //
    //      [ oprnd_2         <-- LInsOp2* insOp2 == toLInsOp2(ins)
    //        oprnd_1
    //        opcode + resv ] <-- LIns* ins
    //
    // - LIR_skip instructions are used to link code chunks.  If the first
    //   instruction on a chunk isn't a LIR_start, it will be a skip, and the
    //   skip's operand will point to the last LIns on the preceding chunk.
    //   LInsSk has the same layout as LInsOp1, but we represent it as a
    //   different class because there are some places where we treat
    //   skips specially and so having it separate seems like a good idea.
    //
    // - Various things about the size and layout of LIns and LInsXYZ are
    //   statically checked in staticSanityCheck().  In particular, this is
    //   worthwhile because there's nothing that guarantees that all the
    //   LInsXYZ classes have a size that is a multiple of word size (but in
    //   practice all sane compilers use a layout that results in this).  We
    //   also check that every LInsXYZ is word-aligned in
    //   LirBuffer::makeRoom();  this seems sensible to avoid potential
    //   slowdowns due to misalignment.  It relies on chunks themselves being
    //   word-aligned, which is extremely likely.
    //
    // - There is an enum, LInsRepKind, with one member for each of the
    //   LInsXYZ kinds.  Each opcode is categorised with its LInsRepKind value
    //   in LIRopcode.tbl, and this is used in various places.
    //-----------------------------------------------------------------------

    enum LInsRepKind {
        // LRK_XYZ corresponds to class LInsXYZ.
        LRK_Op0,
        LRK_Op1,
        LRK_Op2,
        LRK_Op3,
        LRK_Ld,
        LRK_St,
        LRK_Sk,
        LRK_C,
        LRK_P,
        LRK_I,
        LRK_QorD,
        LRK_Jtbl,
        LRK_None    // this one is used for unused opcode numbers
    };

    class LInsOp0;
    class LInsOp1;
    class LInsOp2;
    class LInsOp3;
    class LInsLd;
    class LInsSt;
    class LInsSk;
    class LInsC;
    class LInsP;
    class LInsI;
    class LInsQorD;
    class LInsJtbl;

    class LIns
    {
    private:
        // SharedFields: fields shared by all LIns kinds.
        //
        // The .inReg, .regnum, .inAr and .arIndex fields form a "reservation"
        // that is used temporarily during assembly to record information
        // relating to register allocation.  See class RegAlloc for more
        // details.  Note: all combinations of .inReg/.inAr are possible, ie.
        // 0/0, 0/1, 1/0, 1/1.
        //
        // The .isResultLive field is only used for instructions that return
        // results.  It indicates if the result is live.  It's set (if
        // appropriate) and used only during the codegen pass.
        //
        struct SharedFields {
            uint32_t inReg:1;           // if 1, 'reg' is active
            uint32_t regnum:7;
            uint32_t inAr:1;            // if 1, 'arIndex' is active
            uint32_t isResultLive:1;    // if 1, the instruction's result is live

            uint32_t arIndex:14;        // index into stack frame;  displ is -4*arIndex

            LOpcode  opcode:8;          // instruction's opcode
        };

        union {
            SharedFields sharedFields;
            // Force sizeof(LIns)==8 and 8-byte alignment on 64-bit machines.
            // This is necessary because sizeof(SharedFields)==4 and we want all
            // instances of LIns to be pointer-aligned.
            void* wholeWord;
        };

        inline void initSharedFields(LOpcode opcode)
        {
            // We must zero .inReg, .inAR and .isResultLive, but zeroing the
            // whole word is easier.  Then we set the opcode.
            wholeWord = 0;
            sharedFields.opcode = opcode;
        }

        // LIns-to-LInsXYZ converters.
        inline LInsOp0* toLInsOp0() const;
        inline LInsOp1* toLInsOp1() const;
        inline LInsOp2* toLInsOp2() const;
        inline LInsOp3* toLInsOp3() const;
        inline LInsLd*  toLInsLd()  const;
        inline LInsSt*  toLInsSt()  const;
        inline LInsSk*  toLInsSk()  const;
        inline LInsC*   toLInsC()   const;
        inline LInsP*   toLInsP()   const;
        inline LInsI*   toLInsI()   const;
        inline LInsQorD* toLInsQorD() const;
        inline LInsJtbl*toLInsJtbl()const;

        void staticSanityCheck();

    public:
        // LIns initializers.
        inline void initLInsOp0(LOpcode opcode);
        inline void initLInsOp1(LOpcode opcode, LIns* oprnd1);
        inline void initLInsOp2(LOpcode opcode, LIns* oprnd1, LIns* oprnd2);
        inline void initLInsOp3(LOpcode opcode, LIns* oprnd1, LIns* oprnd2, LIns* oprnd3);
        inline void initLInsLd(LOpcode opcode, LIns* val, int32_t d, AccSet accSet, LoadQual loadQual);
        inline void initLInsSt(LOpcode opcode, LIns* val, LIns* base, int32_t d, AccSet accSet);
        inline void initLInsSk(LIns* prevLIns);
        // Nb: args[] must be allocated and initialised before being passed in;
        // initLInsC() just copies the pointer into the LInsC.
        inline void initLInsC(LOpcode opcode, LIns** args, const CallInfo* ci);
        inline void initLInsP(int32_t arg, int32_t kind);
        inline void initLInsI(LOpcode opcode, int32_t immI);
        inline void initLInsQorD(LOpcode opcode, uint64_t immQorD);
        inline void initLInsJtbl(LIns* index, uint32_t size, LIns** table);

        LOpcode opcode() const { return sharedFields.opcode; }

        // Generally, void instructions (statements) are always live and
        // non-void instructions (expressions) are live if used by another
        // live instruction.  But there are some trickier cases.
        // Any non-void instruction can be marked isResultLive=1 even
        // when it is unreachable, e.g. due to an always-taken branch.
        // The assembler marks it live if it sees any uses, regardless of
        // whether those uses are in reachable code or not.
        bool isLive() const {
            return isV() ||
                   sharedFields.isResultLive ||
                   (isCall() && !callInfo()->_isPure) ||    // impure calls are always live
                   isop(LIR_paramp);                        // LIR_paramp is always live
        }
        void setResultLive() {
            NanoAssert(!isV());
            sharedFields.isResultLive = 1;
        }

        // XXX: old reservation manipulating functions.  See bug 538924.
        // Replacement strategy:
        // - deprecated_markAsClear() --> clearReg() and/or clearArIndex()
        // - deprecated_hasKnownReg() --> isInReg()
        // - deprecated_getReg() --> getReg() after checking isInReg()
        //
        void deprecated_markAsClear() {
            sharedFields.inReg = 0;
            sharedFields.inAr = 0;
        }
        bool deprecated_hasKnownReg() {
            NanoAssert(isExtant());
            return isInReg();
        }
        Register deprecated_getReg() {
            NanoAssert(isExtant());
            if (isInReg()) {
                Register r = { sharedFields.regnum };
                return r;
            } else { 
                return deprecated_UnknownReg;
            }
        }
        uint32_t deprecated_getArIndex() {
            NanoAssert(isExtant());
            return ( isInAr() ? sharedFields.arIndex : 0 );
        }

        // Reservation manipulation.
        //
        // "Extant" mean "in existence, still existing, surviving".  In other
        // words, has the value been computed explicitly (not folded into
        // something else) and is it still available (in a register or spill
        // slot) for use?
        bool isExtant() {
            return isInReg() || isInAr();
        }
        bool isInReg() {
            return sharedFields.inReg;
        }
        bool isInRegMask(RegisterMask allow) {
            return isInReg() && (rmask(getReg()) & allow);
        }
        Register getReg() {
            NanoAssert(isInReg());
            Register r = { sharedFields.regnum };
            return r;
        }
        void setReg(Register r) {
            sharedFields.inReg = 1;
            sharedFields.regnum = REGNUM(r);
        }
        void clearReg() {
            sharedFields.inReg = 0;
        }
        bool isInAr() {
            return sharedFields.inAr;
        }
        uint32_t getArIndex() {
            NanoAssert(isInAr());
            return sharedFields.arIndex;
        }
        void setArIndex(uint32_t arIndex) {
            sharedFields.inAr = 1;
            sharedFields.arIndex = arIndex;
        }
        void clearArIndex() {
            sharedFields.inAr = 0;
        }

        // For various instruction kinds.
        inline LIns*    oprnd1() const;
        inline LIns*    oprnd2() const;
        inline LIns*    oprnd3() const;

        // For branches.
        inline LIns*    getTarget() const;
        inline void     setTarget(LIns* label);

        // For guards.
        inline GuardRecord* record() const;

        // For loads.
        inline LoadQual loadQual() const;

        // For loads/stores.
        inline int32_t  disp() const;
        inline MiniAccSet miniAccSet() const;
        inline AccSet   accSet() const;

        // For LInsSk.
        inline LIns*    prevLIns() const;

        // For LInsP.
        inline uint8_t  paramArg()  const;
        inline uint8_t  paramKind() const;

        // For LInsI.
        inline int32_t  immI() const;

        // For LInsQorD.
#ifdef NANOJIT_64BIT
        inline int32_t  immQlo() const;
        inline uint64_t immQ() const;
#endif
        inline int32_t  immDlo() const;
        inline int32_t  immDhi() const;
        inline double   immD() const;
        inline uint64_t immDasQ() const;

        // For LIR_allocp.
        inline int32_t  size()    const;
        inline void     setSize(int32_t nbytes);

        // For LInsC.
        inline LIns*    arg(uint32_t i)         const;  // right-to-left-order: arg(0) is rightmost
        inline uint32_t argc()                  const;
        inline LIns*    callArgN(uint32_t n)    const;
        inline const CallInfo* callInfo()       const;

        // For LIR_jtbl
        inline uint32_t getTableSize() const;
        inline LIns* getTarget(uint32_t index) const;
        inline void setTarget(uint32_t index, LIns* label) const;

        // isLInsXYZ() returns true if the instruction has the LInsXYZ form.
        // Note that there is some overlap with other predicates, eg.
        // isStore()==isLInsSt(), isCall()==isLInsC(), but that's ok;  these
        // ones are used mostly to check that opcodes are appropriate for
        // instruction layouts, the others are used for non-debugging
        // purposes.
        bool isLInsOp0() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_Op0 == repKinds[opcode()];
        }
        bool isLInsOp1() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_Op1 == repKinds[opcode()];
        }
        bool isLInsOp2() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_Op2 == repKinds[opcode()];
        }
        bool isLInsOp3() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_Op3 == repKinds[opcode()];
        }
        bool isLInsLd() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_Ld == repKinds[opcode()];
        }
        bool isLInsSt() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_St == repKinds[opcode()];
        }
        bool isLInsSk() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_Sk == repKinds[opcode()];
        }
        bool isLInsC() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_C == repKinds[opcode()];
        }
        bool isLInsP() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_P == repKinds[opcode()];
        }
        bool isLInsI() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_I == repKinds[opcode()];
        }
        bool isLInsQorD() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_QorD == repKinds[opcode()];
        }
        bool isLInsJtbl() const {
            NanoAssert(LRK_None != repKinds[opcode()]);
            return LRK_Jtbl == repKinds[opcode()];
        }

        // LIns predicates.
        bool isop(LOpcode o) const {
            return opcode() == o;
        }
        bool isRet() const {
            return isRetOpcode(opcode());
        }
        bool isCmp() const {
            return isCmpOpcode(opcode());
        }
        bool isCall() const {
            return isop(LIR_callv) ||
                   isop(LIR_calli) ||
#if defined NANOJIT_64BIT
                   isop(LIR_callq) ||
#endif
                   isop(LIR_calld);
        }
        bool isCmov() const {
            return isCmovOpcode(opcode());
        }
        bool isStore() const {
            return isLInsSt();
        }
        bool isLoad() const {
            return isLInsLd();
        }
        bool isGuard() const {
            return isop(LIR_x) || isop(LIR_xf) || isop(LIR_xt) ||
                   isop(LIR_xbarrier) || isop(LIR_xtbl) ||
                   isop(LIR_addxovi) || isop(LIR_subxovi) || isop(LIR_mulxovi);
        }
        bool isJov() const {
            return
#ifdef NANOJIT_64BIT
                isop(LIR_addjovq) || isop(LIR_subjovq) ||
#endif
                isop(LIR_addjovi) || isop(LIR_subjovi) || isop(LIR_muljovi);
        }
        // True if the instruction is a 32-bit integer immediate.
        bool isImmI() const {
            return isop(LIR_immi);
        }
        // True if the instruction is a 32-bit integer immediate and
        // has the value 'val' when treated as a 32-bit signed integer.
        bool isImmI(int32_t val) const {
            return isImmI() && immI()==val;
        }
#ifdef NANOJIT_64BIT
        // True if the instruction is a 64-bit integer immediate.
        bool isImmQ() const {
            return isop(LIR_immq);
        }
#endif
        // True if the instruction is a pointer-sized integer immediate.
        bool isImmP() const
        {
#ifdef NANOJIT_64BIT
            return isImmQ();
#else
            return isImmI();
#endif
        }
        // True if the instruction is a 64-bit float immediate.
        bool isImmD() const {
            return isop(LIR_immd);
        }
        // True if the instruction is a 64-bit integer or float immediate.
        bool isImmQorD() const {
            return
#ifdef NANOJIT_64BIT
                isImmQ() ||
#endif
                isImmD();
        }
        // True if the instruction an any type of immediate.
        bool isImmAny() const {
            return isImmI() || isImmQorD();
        }

        bool isBranch() const {
            return isop(LIR_jt) || isop(LIR_jf) || isop(LIR_j) || isop(LIR_jtbl) || isJov();
        }

        LTy retType() const {
            return retTypes[opcode()];
        }
        bool isV() const {
            return retType() == LTy_V;
        }
        bool isI() const {
            return retType() == LTy_I;
        }
#ifdef NANOJIT_64BIT
        bool isQ() const {
            return retType() == LTy_Q;
        }
#endif
        bool isD() const {
            return retType() == LTy_D;
        }
        bool isQorD() const {
            return
#ifdef NANOJIT_64BIT
                isQ() ||
#endif
                isD();
        }
        bool isP() const {
#ifdef NANOJIT_64BIT
            return isQ();
#else
            return isI();
#endif
        }

        inline void* immP() const
        {
        #ifdef NANOJIT_64BIT
            return (void*)immQ();
        #else
            return (void*)immI();
        #endif
        }
    };

    typedef SeqBuilder<LIns*> InsList;
    typedef SeqBuilder<char*> StringList;


    // 0-operand form.  Used for LIR_start and LIR_label.
    class LInsOp0
    {
    private:
        friend class LIns;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // 1-operand form.  Used for LIR_reti, unary arithmetic/logic ops, etc.
    class LInsOp1
    {
    private:
        friend class LIns;

        LIns*       oprnd_1;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // 2-operand form.  Used for guards, branches, comparisons, binary
    // arithmetic/logic ops, etc.
    class LInsOp2
    {
    private:
        friend class LIns;

        LIns*       oprnd_2;

        LIns*       oprnd_1;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // 3-operand form.  Used for conditional moves, jov branches, and xov guards.
    class LInsOp3
    {
    private:
        friend class LIns;

        LIns*       oprnd_3;

        LIns*       oprnd_2;

        LIns*       oprnd_1;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // Used for all loads.
    class LInsLd
    {
    private:
        friend class LIns;

        // Nb: the LIR writer pipeline handles things if a displacement
        // exceeds 16 bits.  This is rare, but does happen occasionally.  We
        // could go to 24 bits but then it would happen so rarely that the
        // handler code would be difficult to test and thus untrustworthy.
        //
        // Nb: the types of these bitfields are all 32-bit integers to ensure
        // they are fully packed on Windows, sigh.  Also, 'loadQual' is
        // unsigned to ensure the values 0, 1, and 2 all fit in 2 bits.
        //
        // Nb: explicit signed keyword for bitfield types is required,
        // some compilers may treat them as unsigned without it.
        // See Bugzilla 584219 comment #18
        signed int  disp:16;
        signed int  miniAccSetVal:8;
        uint32_t    loadQual:2;

        LIns*       oprnd_1;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // Used for all stores.
    class LInsSt
    {
    private:
        friend class LIns;

        int16_t     disp;
        MiniAccSetVal miniAccSetVal;

        LIns*       oprnd_2;

        LIns*       oprnd_1;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // Used for LIR_skip.
    class LInsSk
    {
    private:
        friend class LIns;

        LIns*       prevLIns;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // Used for all variants of LIR_call.
    class LInsC
    {
    private:
        friend class LIns;

        // Arguments in reverse order, just like insCall() (ie. args[0] holds
        // the rightmost arg).  The array should be allocated by the same
        // allocator as the LIR buffers, because it has the same lifetime.
        LIns**      args;

        const CallInfo* ci;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // Used for LIR_paramp.
    class LInsP
    {
    private:
        friend class LIns;

        uintptr_t   arg:8;
        uintptr_t   kind:8;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // Used for LIR_immi and LIR_allocp.
    class LInsI
    {
    private:
        friend class LIns;

        int32_t     immI;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // Used for LIR_immq and LIR_immd.
    class LInsQorD
    {
    private:
        friend class LIns;

        int32_t     immQorDlo;

        int32_t     immQorDhi;

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; };
    };

    // Used for LIR_jtbl.  'oprnd_1' must be a uint32_t index in
    // the range 0 <= index < size; no range check is performed.
    // 'table' is an array of labels.
    class LInsJtbl
    {
    private:
        friend class LIns;

        uint32_t    size;     // number of entries in table
        LIns**      table;    // pointer to table[size] with same lifetime as this LInsJtbl
        LIns*       oprnd_1;  // uint32_t index expression

        LIns        ins;

    public:
        LIns* getLIns() { return &ins; }
    };

    // Used only as a placeholder for OP___ macros for unused opcodes in
    // LIRopcode.tbl.
    class LInsNone
    {
    };

    LInsOp0*  LIns::toLInsOp0()  const { return (LInsOp0* )(uintptr_t(this+1) - sizeof(LInsOp0 )); }
    LInsOp1*  LIns::toLInsOp1()  const { return (LInsOp1* )(uintptr_t(this+1) - sizeof(LInsOp1 )); }
    LInsOp2*  LIns::toLInsOp2()  const { return (LInsOp2* )(uintptr_t(this+1) - sizeof(LInsOp2 )); }
    LInsOp3*  LIns::toLInsOp3()  const { return (LInsOp3* )(uintptr_t(this+1) - sizeof(LInsOp3 )); }
    LInsLd*   LIns::toLInsLd()   const { return (LInsLd*  )(uintptr_t(this+1) - sizeof(LInsLd  )); }
    LInsSt*   LIns::toLInsSt()   const { return (LInsSt*  )(uintptr_t(this+1) - sizeof(LInsSt  )); }
    LInsSk*   LIns::toLInsSk()   const { return (LInsSk*  )(uintptr_t(this+1) - sizeof(LInsSk  )); }
    LInsC*    LIns::toLInsC()    const { return (LInsC*   )(uintptr_t(this+1) - sizeof(LInsC   )); }
    LInsP*    LIns::toLInsP()    const { return (LInsP*   )(uintptr_t(this+1) - sizeof(LInsP   )); }
    LInsI*    LIns::toLInsI()    const { return (LInsI*   )(uintptr_t(this+1) - sizeof(LInsI   )); }
    LInsQorD* LIns::toLInsQorD() const { return (LInsQorD*)(uintptr_t(this+1) - sizeof(LInsQorD)); }
    LInsJtbl* LIns::toLInsJtbl() const { return (LInsJtbl*)(uintptr_t(this+1) - sizeof(LInsJtbl)); }

    void LIns::initLInsOp0(LOpcode opcode) {
        initSharedFields(opcode);
        NanoAssert(isLInsOp0());
    }
    void LIns::initLInsOp1(LOpcode opcode, LIns* oprnd1) {
        initSharedFields(opcode);
        toLInsOp1()->oprnd_1 = oprnd1;
        NanoAssert(isLInsOp1());
    }
    void LIns::initLInsOp2(LOpcode opcode, LIns* oprnd1, LIns* oprnd2) {
        initSharedFields(opcode);
        toLInsOp2()->oprnd_1 = oprnd1;
        toLInsOp2()->oprnd_2 = oprnd2;
        NanoAssert(isLInsOp2());
    }
    void LIns::initLInsOp3(LOpcode opcode, LIns* oprnd1, LIns* oprnd2, LIns* oprnd3) {
        initSharedFields(opcode);
        toLInsOp3()->oprnd_1 = oprnd1;
        toLInsOp3()->oprnd_2 = oprnd2;
        toLInsOp3()->oprnd_3 = oprnd3;
        NanoAssert(isLInsOp3());
    }
    void LIns::initLInsLd(LOpcode opcode, LIns* val, int32_t d, AccSet accSet, LoadQual loadQual) {
        initSharedFields(opcode);
        toLInsLd()->oprnd_1 = val;
        NanoAssert(d == int16_t(d));
        toLInsLd()->disp = int16_t(d);
        toLInsLd()->miniAccSetVal = compressAccSet(accSet).val;
        toLInsLd()->loadQual = loadQual;
        NanoAssert(isLInsLd());
    }
    void LIns::initLInsSt(LOpcode opcode, LIns* val, LIns* base, int32_t d, AccSet accSet) {
        initSharedFields(opcode);
        toLInsSt()->oprnd_1 = val;
        toLInsSt()->oprnd_2 = base;
        NanoAssert(d == int16_t(d));
        toLInsSt()->disp = int16_t(d);
        toLInsSt()->miniAccSetVal = compressAccSet(accSet).val;
        NanoAssert(isLInsSt());
    }
    void LIns::initLInsSk(LIns* prevLIns) {
        initSharedFields(LIR_skip);
        toLInsSk()->prevLIns = prevLIns;
        NanoAssert(isLInsSk());
    }
    void LIns::initLInsC(LOpcode opcode, LIns** args, const CallInfo* ci) {
        initSharedFields(opcode);
        toLInsC()->args = args;
        toLInsC()->ci = ci;
        NanoAssert(isLInsC());
    }
    void LIns::initLInsP(int32_t arg, int32_t kind) {
        initSharedFields(LIR_paramp);
        NanoAssert(isU8(arg) && isU8(kind));
        toLInsP()->arg = arg;
        toLInsP()->kind = kind;
        NanoAssert(isLInsP());
    }
    void LIns::initLInsI(LOpcode opcode, int32_t immI) {
        initSharedFields(opcode);
        toLInsI()->immI = immI;
        NanoAssert(isLInsI());
    }
    void LIns::initLInsQorD(LOpcode opcode, uint64_t immQorD) {
        initSharedFields(opcode);
        toLInsQorD()->immQorDlo = int32_t(immQorD);
        toLInsQorD()->immQorDhi = int32_t(immQorD >> 32);
        NanoAssert(isLInsQorD());
    }
    void LIns::initLInsJtbl(LIns* index, uint32_t size, LIns** table) {
        initSharedFields(LIR_jtbl);
        toLInsJtbl()->oprnd_1 = index;
        toLInsJtbl()->table = table;
        toLInsJtbl()->size = size;
        NanoAssert(isLInsJtbl());
    }

    LIns* LIns::oprnd1() const {
        NanoAssert(isLInsOp1() || isLInsOp2() || isLInsOp3() || isLInsLd() || isLInsSt() || isLInsJtbl());
        return toLInsOp2()->oprnd_1;
    }
    LIns* LIns::oprnd2() const {
        NanoAssert(isLInsOp2() || isLInsOp3() || isLInsSt());
        return toLInsOp2()->oprnd_2;
    }
    LIns* LIns::oprnd3() const {
        NanoAssert(isLInsOp3());
        return toLInsOp3()->oprnd_3;
    }

    LIns* LIns::getTarget() const {
        NanoAssert(isBranch() && !isop(LIR_jtbl));
        if (isJov())
            return oprnd3();
        else
            return oprnd2();
    }

    void LIns::setTarget(LIns* label) {
        NanoAssert(label && label->isop(LIR_label));
        NanoAssert(isBranch() && !isop(LIR_jtbl));
        if (isJov())
            toLInsOp3()->oprnd_3 = label;
        else
            toLInsOp2()->oprnd_2 = label;
    }

    LIns* LIns::getTarget(uint32_t index) const {
        NanoAssert(isop(LIR_jtbl));
        NanoAssert(index < toLInsJtbl()->size);
        return toLInsJtbl()->table[index];
    }

    void LIns::setTarget(uint32_t index, LIns* label) const {
        NanoAssert(label && label->isop(LIR_label));
        NanoAssert(isop(LIR_jtbl));
        NanoAssert(index < toLInsJtbl()->size);
        toLInsJtbl()->table[index] = label;
    }

    GuardRecord *LIns::record() const {
        NanoAssert(isGuard());
        switch (opcode()) {
        case LIR_x:
        case LIR_xt:
        case LIR_xf:
        case LIR_xtbl:
        case LIR_xbarrier:
            return (GuardRecord*)oprnd2();

        case LIR_addxovi:
        case LIR_subxovi:
        case LIR_mulxovi:
            return (GuardRecord*)oprnd3();

        default:
            NanoAssert(0);
            return NULL;
        }
    }

    LoadQual LIns::loadQual() const {
        NanoAssert(isLInsLd());
        return (LoadQual)toLInsLd()->loadQual;
    }

    int32_t LIns::disp() const {
        if (isLInsSt()) {
            return toLInsSt()->disp;
        } else {
            NanoAssert(isLInsLd());
            return toLInsLd()->disp;
        }
    }

    MiniAccSet LIns::miniAccSet() const {
        MiniAccSet miniAccSet;
        if (isLInsSt()) {
            miniAccSet.val = toLInsSt()->miniAccSetVal;
        } else {
            NanoAssert(isLInsLd());
            miniAccSet.val = toLInsLd()->miniAccSetVal;
        }
        return miniAccSet;
    }

    AccSet LIns::accSet() const {
        return decompressMiniAccSet(miniAccSet());
    }

    LIns* LIns::prevLIns() const {
        NanoAssert(isLInsSk());
        return toLInsSk()->prevLIns;
    }

    inline uint8_t LIns::paramArg()  const { NanoAssert(isop(LIR_paramp)); return toLInsP()->arg; }
    inline uint8_t LIns::paramKind() const { NanoAssert(isop(LIR_paramp)); return toLInsP()->kind; }

    inline int32_t LIns::immI()     const { NanoAssert(isImmI());  return toLInsI()->immI; }

#ifdef NANOJIT_64BIT
    inline int32_t LIns::immQlo()   const { NanoAssert(isImmQ()); return toLInsQorD()->immQorDlo; }
    uint64_t       LIns::immQ()     const {
        NanoAssert(isImmQ());
        return (uint64_t(toLInsQorD()->immQorDhi) << 32) | uint32_t(toLInsQorD()->immQorDlo);
    }
#endif
    inline int32_t LIns::immDlo() const { NanoAssert(isImmD()); return toLInsQorD()->immQorDlo; }
    inline int32_t LIns::immDhi() const { NanoAssert(isImmD()); return toLInsQorD()->immQorDhi; }
    double         LIns::immD()    const {
        NanoAssert(isImmD());
        union {
            double f;
            uint64_t q;
        } u;
        u.q = immDasQ();
        return u.f;
    }
    uint64_t       LIns::immDasQ()  const {
        NanoAssert(isImmD());
        return (uint64_t(toLInsQorD()->immQorDhi) << 32) | uint32_t(toLInsQorD()->immQorDlo);
    }

    int32_t LIns::size() const {
        NanoAssert(isop(LIR_allocp));
        return toLInsI()->immI << 2;
    }

    void LIns::setSize(int32_t nbytes) {
        NanoAssert(isop(LIR_allocp));
        NanoAssert(nbytes > 0);
        toLInsI()->immI = (nbytes+3)>>2; // # of required 32bit words
    }

    // Index args in reverse order, i.e. arg(0) returns the rightmost arg.
    // Nb: this must be kept in sync with insCall().
    LIns* LIns::arg(uint32_t i) const
    {
        NanoAssert(isCall());
        NanoAssert(i < callInfo()->count_args());
        return toLInsC()->args[i];  // args[] is in right-to-left order as well
    }

    uint32_t LIns::argc() const {
        return callInfo()->count_args();
    }

    LIns* LIns::callArgN(uint32_t n) const
    {
        return arg(argc()-n-1);
    }

    const CallInfo* LIns::callInfo() const
    {
        NanoAssert(isCall());
        return toLInsC()->ci;
    }

    uint32_t LIns::getTableSize() const
    {
        NanoAssert(isLInsJtbl());
        return toLInsJtbl()->size;
    }

    class LirWriter
    {
    public:
        LirWriter *out;

        LirWriter(LirWriter* out)
            : out(out) {}
        virtual ~LirWriter() {}

        virtual LIns* ins0(LOpcode v) {
            return out->ins0(v);
        }
        virtual LIns* ins1(LOpcode v, LIns* a) {
            return out->ins1(v, a);
        }
        virtual LIns* ins2(LOpcode v, LIns* a, LIns* b) {
            return out->ins2(v, a, b);
        }
        virtual LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c) {
            return out->ins3(v, a, b, c);
        }
        virtual LIns* insGuard(LOpcode v, LIns *c, GuardRecord *gr) {
            return out->insGuard(v, c, gr);
        }
        virtual LIns* insGuardXov(LOpcode v, LIns *a, LIns* b, GuardRecord *gr) {
            return out->insGuardXov(v, a, b, gr);
        }
        virtual LIns* insBranch(LOpcode v, LIns* condition, LIns* to) {
            return out->insBranch(v, condition, to);
        }
        virtual LIns* insBranchJov(LOpcode v, LIns* a, LIns* b, LIns* to) {
            return out->insBranchJov(v, a, b, to);
        }
        // arg: 0=first, 1=second, ...
        // kind: 0=arg 1=saved-reg
        virtual LIns* insParam(int32_t arg, int32_t kind) {
            return out->insParam(arg, kind);
        }
        virtual LIns* insImmI(int32_t imm) {
            return out->insImmI(imm);
        }
#ifdef NANOJIT_64BIT
        virtual LIns* insImmQ(uint64_t imm) {
            return out->insImmQ(imm);
        }
#endif
        virtual LIns* insImmD(double d) {
            return out->insImmD(d);
        }
        virtual LIns* insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet, LoadQual loadQual) {
            return out->insLoad(op, base, d, accSet, loadQual);
        }
        virtual LIns* insStore(LOpcode op, LIns* value, LIns* base, int32_t d, AccSet accSet) {
            return out->insStore(op, value, base, d, accSet);
        }
        // args[] is in reverse order, ie. args[0] holds the rightmost arg.
        virtual LIns* insCall(const CallInfo *call, LIns* args[]) {
            return out->insCall(call, args);
        }
        virtual LIns* insAlloc(int32_t size) {
            NanoAssert(size != 0);
            return out->insAlloc(size);
        }
        virtual LIns* insJtbl(LIns* index, uint32_t size) {
            return out->insJtbl(index, size);
        }
        virtual LIns* insComment(const char* str) {
            return out->insComment(str);
        }

        // convenience functions

        // Inserts a conditional to execute and branches to execute if
        // the condition is true and false respectively.
        LIns* insChoose(LIns* cond, LIns* iftrue, LIns* iffalse, bool use_cmov);

        // Inserts an integer comparison to 0
        LIns* insEqI_0(LIns* oprnd1) {
            return ins2ImmI(LIR_eqi, oprnd1, 0);
        }

        // Inserts a pointer comparison to 0
        LIns* insEqP_0(LIns* oprnd1) {
            return ins2(LIR_eqp, oprnd1, insImmWord(0));
        }

        // Inserts a binary operation where the second operand is an
        // integer immediate.
        LIns* ins2ImmI(LOpcode v, LIns* oprnd1, int32_t imm) {
            return ins2(v, oprnd1, insImmI(imm));
        }

        LIns* insImmP(const void *ptr) {
#ifdef NANOJIT_64BIT
            return insImmQ((uint64_t)ptr);
#else
            return insImmI((int32_t)ptr);
#endif
        }

        LIns* insImmWord(intptr_t value) {
#ifdef NANOJIT_64BIT
            return insImmQ(value);
#else
            return insImmI(value);
#endif
        }

        // Sign-extend integers to native integers. On 32-bit this is a no-op.
        LIns* insI2P(LIns* intIns) {
#ifdef NANOJIT_64BIT
            return ins1(LIR_i2q, intIns);
#else
            return intIns;
#endif
        }

        // Zero-extend integers to native integers. On 32-bit this is a no-op.
        LIns* insUI2P(LIns* uintIns) {
    #ifdef NANOJIT_64BIT
            return ins1(LIR_ui2uq, uintIns);
    #else
            return uintIns;
    #endif
        }

        // Do a load with LoadQual==LOAD_NORMAL.
        LIns* insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet) {
            return insLoad(op, base, d, accSet, LOAD_NORMAL);
        }

        // Chooses LIR_sti, LIR_stq or LIR_std according to the type of 'value'.
        LIns* insStore(LIns* value, LIns* base, int32_t d, AccSet accSet);
    };


#ifdef NJ_VERBOSE
    extern const char* lirNames[];

    // Maps address ranges to meaningful names.
    class AddrNameMap
    {
        Allocator& allocator;
        class Entry
        {
        public:
            Entry(int) : name(0), size(0), align(0) {}
            Entry(char *n, size_t s, size_t a) : name(n), size(s), align(a) {}
            char* name;
            size_t size:29, align:3;
        };
        TreeMap<const void*, Entry*> names;     // maps code regions to names
    public:
        AddrNameMap(Allocator& allocator);
        void addAddrRange(const void *p, size_t size, size_t align, const char *name);
        void lookupAddr(void *p, char*& name, int32_t& offset);
    };

    // Maps LIR instructions to meaningful names.
    class LirNameMap
    {
    private:
        Allocator& alloc;

        // A small string-wrapper class, required because we need '==' to
        // compare string contents, not string pointers, when strings are used
        // as keys in CountMap.
        struct Str {
            Allocator& alloc;
            char* s;

            Str(Allocator& alloc_, const char* s_) : alloc(alloc_) {
                s = new (alloc) char[1+strlen(s_)];
                strcpy(s, s_);
            }

            bool operator==(const Str& str) const {
                return (0 == strcmp(this->s, str.s));
            }
        };

        // Similar to 'struct Str' -- we need to hash the string's contents,
        // not its pointer.
        template<class K> struct StrHash {
            static size_t hash(const Str &k) {
                // (const void*) cast is required by ARM RVCT 2.2
                return murmurhash((const void*)k.s, strlen(k.s));
            }
        };

        template <class Key, class H=DefaultHash<Key> >
        class CountMap: public HashMap<Key, int, H> {
        public:
            CountMap(Allocator& alloc) : HashMap<Key, int, H>(alloc, 128) {}
            int add(Key k) {
                int c = 1;
                if (this->containsKey(k)) {
                    c = 1+this->get(k);
                }
                this->put(k,c);
                return c;
            }
        };

        CountMap<int> lircounts;
        CountMap<const CallInfo *> funccounts;
        CountMap<Str, StrHash<Str> > namecounts;

        void addNameWithSuffix(LIns* i, const char *s, int suffix, bool ignoreOneSuffix);

        class Entry
        {
        public:
            Entry(int) : name(0) {}
            Entry(char* n) : name(n) {}
            char* name;
        };

        HashMap<LIns*, Entry*> names;

    public:
        LirNameMap(Allocator& alloc)
            : alloc(alloc),
            lircounts(alloc),
            funccounts(alloc),
            namecounts(alloc),
            names(alloc)
        {}

        void        addName(LIns* ins, const char *s);  // gives 'ins' a special name
        const char* createName(LIns* ins);              // gives 'ins' a generic name
        const char* lookupName(LIns* ins);
    };

    // We use big buffers for cases where we need to fit a whole instruction,
    // and smaller buffers for all the others.  These should easily be long
    // enough, but for safety the formatXyz() functions check and won't exceed
    // those limits.
    class InsBuf {
    public:
        static const size_t len = 1000;
        char buf[len];
    };
    class RefBuf {
    public:
        static const size_t len = 200;
        char buf[len];
    };

    class LInsPrinter
    {
    private:
        Allocator& alloc;
        const int EMB_NUM_USED_ACCS;

        char *formatImmI(RefBuf* buf, int32_t c);
#ifdef NANOJIT_64BIT
        char *formatImmQ(RefBuf* buf, uint64_t c);
#endif
        char *formatImmD(RefBuf* buf, double c);
        void formatGuard(InsBuf* buf, LIns* ins);       // defined by the embedder
        void formatGuardXov(InsBuf* buf, LIns* ins);    // defined by the embedder

    public:
        static const char* accNames[];                  // defined by the embedder

        LInsPrinter(Allocator& alloc, int embNumUsedAccs)
            : alloc(alloc), EMB_NUM_USED_ACCS(embNumUsedAccs)
        {
            addrNameMap = new (alloc) AddrNameMap(alloc);
            lirNameMap = new (alloc) LirNameMap(alloc);
        }

        char *formatAddr(RefBuf* buf, void* p);
        char *formatRef(RefBuf* buf, LIns* ref, bool showImmValue = true);
        char *formatIns(InsBuf* buf, LIns* ins);
        char *formatAccSet(RefBuf* buf, AccSet accSet);

        AddrNameMap* addrNameMap;
        LirNameMap* lirNameMap;
    };


    class VerboseWriter : public LirWriter
    {
        InsList code;
        LInsPrinter* printer;
        LogControl* logc;
        const char* const prefix;
        bool const always_flush;
    public:
        VerboseWriter(Allocator& alloc, LirWriter *out, LInsPrinter* printer, LogControl* logc,
                      const char* prefix = "", bool always_flush = false)
            : LirWriter(out), code(alloc), printer(printer), logc(logc), prefix(prefix), always_flush(always_flush)
        {}

        LIns* add(LIns* i) {
            if (i) {
                code.add(i);
                if (always_flush)
                    flush();
            }
            return i;
        }

        LIns* add_flush(LIns* i) {
            if ((i = add(i)) != 0)
                flush();
            return i;
        }

        void flush()
        {
            if (!code.isEmpty()) {
                InsBuf b;
                for (Seq<LIns*>* p = code.get(); p != NULL; p = p->tail)
                    logc->printf("%s    %s\n", prefix, printer->formatIns(&b, p->head));
                code.clear();
            }
        }

        LIns* insGuard(LOpcode op, LIns* cond, GuardRecord *gr) {
            return add_flush(out->insGuard(op,cond,gr));
        }

        LIns* insGuardXov(LOpcode op, LIns* a, LIns* b, GuardRecord *gr) {
            return add(out->insGuardXov(op,a,b,gr));
        }

        LIns* insBranch(LOpcode v, LIns* condition, LIns* to) {
            return add_flush(out->insBranch(v, condition, to));
        }

        LIns* insBranchJov(LOpcode v, LIns* a, LIns* b, LIns* to) {
            return add(out->insBranchJov(v, a, b, to));
        }

        LIns* insJtbl(LIns* index, uint32_t size) {
            return add_flush(out->insJtbl(index, size));
        }

        LIns* ins0(LOpcode v) {
            if (v == LIR_label || v == LIR_start) {
                flush();
            }
            return add(out->ins0(v));
        }

        LIns* ins1(LOpcode v, LIns* a) {
            return isRetOpcode(v) ? add_flush(out->ins1(v, a)) : add(out->ins1(v, a));
        }
        LIns* ins2(LOpcode v, LIns* a, LIns* b) {
            return add(out->ins2(v, a, b));
        }
        LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c) {
            return add(out->ins3(v, a, b, c));
        }
        LIns* insCall(const CallInfo *call, LIns* args[]) {
            return add_flush(out->insCall(call, args));
        }
        LIns* insParam(int32_t i, int32_t kind) {
            return add(out->insParam(i, kind));
        }
        LIns* insLoad(LOpcode v, LIns* base, int32_t disp, AccSet accSet, LoadQual loadQual) {
            return add(out->insLoad(v, base, disp, accSet, loadQual));
        }
        LIns* insStore(LOpcode op, LIns* v, LIns* b, int32_t d, AccSet accSet) {
            return add_flush(out->insStore(op, v, b, d, accSet));
        }
        LIns* insAlloc(int32_t size) {
            return add(out->insAlloc(size));
        }
        LIns* insImmI(int32_t imm) {
            return add(out->insImmI(imm));
        }
#ifdef NANOJIT_64BIT
        LIns* insImmQ(uint64_t imm) {
            return add(out->insImmQ(imm));
        }
#endif
        LIns* insImmD(double d) {
            return add(out->insImmD(d));
        }

        LIns* insComment(const char* str) {
            return add_flush(out->insComment(str));
        }
    };

#endif

    class ExprFilter: public LirWriter
    {
    public:
        ExprFilter(LirWriter *out) : LirWriter(out) {}
        LIns* ins1(LOpcode v, LIns* a);
        LIns* ins2(LOpcode v, LIns* a, LIns* b);
        LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c);
        LIns* insGuard(LOpcode, LIns* cond, GuardRecord *);
        LIns* insGuardXov(LOpcode, LIns* a, LIns* b, GuardRecord *);
        LIns* insBranch(LOpcode, LIns* cond, LIns* target);
        LIns* insBranchJov(LOpcode, LIns* a, LIns* b, LIns* target);
        LIns* insLoad(LOpcode op, LIns* base, int32_t off, AccSet accSet, LoadQual loadQual);
    private:
        LIns* simplifyOverflowArith(LOpcode op, LIns** opnd1, LIns** opnd2);
    };

    class CseFilter: public LirWriter
    {
        enum NLKind {
            // We divide instruction kinds into groups.  LIns0 isn't present
            // because we don't need to record any 0-ary instructions.  Loads
            // aren't here, they're handled separately.
            NLImmISmall = 0,
            NLImmILarge = 1,
            NLImmQ      = 2,   // only occurs on 64-bit platforms
            NLImmD      = 3,
            NL1         = 4,
            NL2         = 5,
            NL3         = 6,
            NLCall      = 7,

            NLFirst = 0,
            NLLast = 7,
            // Need a value after "last" to outsmart compilers that insist last+1 is impossible.
            NLInvalid = 8
        };
        #define nextNLKind(kind)  NLKind(kind+1)

        // There is one table for each NLKind.  This lets us size the lists
        // appropriately (some instruction kinds are more common than others).
        // It also lets us have NLKind-specific find/add/grow functions, which
        // are faster than generic versions.
        //
        // Nb: m_listNL and m_capNL sizes must be a power of 2.
        //     Don't start m_capNL too small, or we'll waste time growing and rehashing.
        //     Don't start m_capNL too large, will waste memory.
        //
        LIns**      m_listNL[NLLast + 1];
        uint32_t    m_capNL[ NLLast + 1];
        uint32_t    m_usedNL[NLLast + 1];
        typedef uint32_t (CseFilter::*find_t)(LIns*);
        find_t      m_findNL[NLLast + 1];

        // Similarly, for loads, there is one table for each CseAcc.  A CseAcc
        // is like a normal access region, but there are two extra possible
        // values: CSE_ACC_CONST, which is where we put all CONST-qualified
        // loads, and CSE_ACC_MULTIPLE, where we put all multi-region loads.
        // All remaining loads are single-region and go in the table entry for
        // their region.
        //
        // This arrangement makes the removal of invalidated loads fast -- we
        // can invalidate all loads from a single region by clearing that
        // region's table.
        //
        typedef uint8_t CseAcc;     // same type as MiniAccSet

        static const uint8_t CSE_NUM_ACCS = NUM_ACCS + 2;

        // These values would be 'static const' except they are defined in
        // terms of EMB_NUM_USED_ACCS which is itself not 'static const'
        // because it's passed in by the embedding.
        const uint8_t EMB_NUM_USED_ACCS;      // number of access regions used by the embedding
        const uint8_t CSE_NUM_USED_ACCS;      // EMB_NUM_USED_ACCS + 2
        const CseAcc CSE_ACC_CONST;           // EMB_NUM_USED_ACCS + 0
        const CseAcc CSE_ACC_MULTIPLE;        // EMB_NUM_USED_ACCS + 1

        // We will only use CSE_NUM_USED_ACCS of these entries, ie. the
        // number of lists allocated depends on the number of access regions
        // in use by the embedding.
        LIns**      m_listL[CSE_NUM_ACCS];
        uint32_t    m_capL[ CSE_NUM_ACCS];
        uint32_t    m_usedL[CSE_NUM_ACCS];

        AccSet      storesSinceLastLoad;    // regions stored to since the last load

        Allocator& alloc;

        // After a conditional guard such as "xf cmp", we know that 'cmp' must
        // be true, else we would have side-exited.  So if we see 'cmp' again
        // we can treat it like a constant.  This table records such
        // comparisons.
        HashMap <LIns*, bool> knownCmpValues;

        // If true, we will not add new instructions to the CSE tables, but we
        // will continue to CSE instructions that match existing table
        // entries.  Load instructions will still be removed if aliasing
        // stores are encountered.
        bool suspended;

        CseAcc miniAccSetToCseAcc(MiniAccSet miniAccSet, LoadQual loadQual) {
            NanoAssert(miniAccSet.val < NUM_ACCS || miniAccSet.val == MINI_ACCSET_MULTIPLE.val);
            return (loadQual == LOAD_CONST) ? CSE_ACC_CONST :
                   (miniAccSet.val == MINI_ACCSET_MULTIPLE.val) ? CSE_ACC_MULTIPLE :
                   miniAccSet.val;
        }

        static uint32_t hash8(uint32_t hash, const uint8_t data);
        static uint32_t hash32(uint32_t hash, const uint32_t data);
        static uint32_t hashptr(uint32_t hash, const void* data);
        static uint32_t hashfinish(uint32_t hash);

        static uint32_t hashImmI(int32_t);
        static uint32_t hashImmQorD(uint64_t);     // not NANOJIT_64BIT-only -- used by findImmD()
        static uint32_t hash1(LOpcode op, LIns*);
        static uint32_t hash2(LOpcode op, LIns*, LIns*);
        static uint32_t hash3(LOpcode op, LIns*, LIns*, LIns*);
        static uint32_t hashLoad(LOpcode op, LIns*, int32_t);
        static uint32_t hashCall(const CallInfo *call, uint32_t argc, LIns* args[]);

        // These versions are used before an LIns has been created.
        LIns* findImmISmall(int32_t a, uint32_t &k);
        LIns* findImmILarge(int32_t a, uint32_t &k);
#ifdef NANOJIT_64BIT
        LIns* findImmQ(uint64_t a, uint32_t &k);
#endif
        LIns* findImmD(uint64_t d, uint32_t &k);
        LIns* find1(LOpcode v, LIns* a, uint32_t &k);
        LIns* find2(LOpcode v, LIns* a, LIns* b, uint32_t &k);
        LIns* find3(LOpcode v, LIns* a, LIns* b, LIns* c, uint32_t &k);
        LIns* findLoad(LOpcode v, LIns* a, int32_t b, MiniAccSet miniAccSet, LoadQual loadQual,
                       uint32_t &k);
        LIns* findCall(const CallInfo *call, uint32_t argc, LIns* args[], uint32_t &k);

        // These versions are used after an LIns has been created; they are
        // used for rehashing after growing.  They just call onto the
        // multi-arg versions above.
        uint32_t findImmISmall(LIns* ins);
        uint32_t findImmILarge(LIns* ins);
#ifdef NANOJIT_64BIT
        uint32_t findImmQ(LIns* ins);
#endif
        uint32_t findImmD(LIns* ins);
        uint32_t find1(LIns* ins);
        uint32_t find2(LIns* ins);
        uint32_t find3(LIns* ins);
        uint32_t findCall(LIns* ins);
        uint32_t findLoad(LIns* ins);

        // These return false if they failed to grow due to OOM.
        bool growNL(NLKind kind);
        bool growL(CseAcc cseAcc);

        void addNLImmISmall(LIns* ins, uint32_t k);
        // 'k' is the index found by findXYZ().
        void addNL(NLKind kind, LIns* ins, uint32_t k);
        void addL(LIns* ins, uint32_t k);

        void clearAll();            // clears all tables
        void clearNL(NLKind);       // clears one non-load table
        void clearL(CseAcc);        // clears one load table

    public:
        CseFilter(LirWriter *out, uint8_t embNumUsedAccs, Allocator&);

        // CseFilter does some largish fallible allocations at start-up.  If
        // they fail, the constructor sets this field to 'true'.  It should be
        // checked after creation, and if set the CseFilter cannot be used.
        // (But the check can be skipped if allocChunk() always succeeds.)
        //
        // FIXME: This fallibility is a sop to TraceMonkey's implementation of
        // infallible malloc -- by avoiding some largish infallible
        // allocations, it reduces the size of the reserve space needed.
        // Bug 624590 is open to fix this.
        bool initOOM;

        LIns* insImmI(int32_t imm);
#ifdef NANOJIT_64BIT
        LIns* insImmQ(uint64_t q);
#endif
        LIns* insImmD(double d);
        LIns* ins0(LOpcode v);
        LIns* ins1(LOpcode v, LIns*);
        LIns* ins2(LOpcode v, LIns*, LIns*);
        LIns* ins3(LOpcode v, LIns*, LIns*, LIns*);
        LIns* insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet, LoadQual loadQual);
        LIns* insStore(LOpcode op, LIns* value, LIns* base, int32_t d, AccSet accSet);
        LIns* insCall(const CallInfo *call, LIns* args[]);
        LIns* insGuard(LOpcode op, LIns* cond, GuardRecord *gr);
        LIns* insGuardXov(LOpcode op, LIns* a, LIns* b, GuardRecord *gr);

        // These functions provide control over CSE in the face of control
        // flow.  A suspend()/resume() pair may be put around a synthetic
        // control flow diamond, preventing the inserted label from resetting
        // the CSE state.  A suspend() call must be dominated by a resume()
        // call, else incorrect code could result.
        void suspend() { suspended = true; }
        void resume() { suspended = false; }
    };

    class LirBuffer
    {
        public:
            LirBuffer(Allocator& alloc);
            void        clear();
            uintptr_t   makeRoom(size_t szB);   // make room for an instruction

            debug_only (void validate() const;)
            verbose_only(LInsPrinter* printer;)

            int32_t insCount();

            // stats
            struct
            {
                uint32_t lir;    // # instructions
            }
            _stats;

            AbiKind abi;
            LIns *state, *param1, *sp, *rp;
            LIns* savedRegs[NumSavedRegs+1]; // Allocate an extra element in case NumSavedRegs == 0

            /** Each chunk is just a raw area of LIns instances, with no header
                and no more than 8-byte alignment.  The chunk size is somewhat arbitrary. */
            static const size_t CHUNK_SZB = 8000;

        protected:
            friend class LirBufWriter;

            /** Get CHUNK_SZB more memory for LIR instructions. */
            void        chunkAlloc();
            void        moveToNewChunk(uintptr_t addrOfLastLInsOnCurrentChunk);

            Allocator&  _allocator;
            uintptr_t   _unused;   // next unused instruction slot in the current LIR chunk
            uintptr_t   _limit;    // one past the last usable byte of the current LIR chunk
    };

    class LirBufWriter : public LirWriter
    {
        LirBuffer*              _buf;        // underlying buffer housing the instructions
        const Config&           _config;

        public:
            LirBufWriter(LirBuffer* buf, const Config& config)
                : LirWriter(0), _buf(buf), _config(config) {
            }

            // LirWriter interface
            LIns*   insLoad(LOpcode op, LIns* base, int32_t disp, AccSet accSet, LoadQual loadQual);
            LIns*   insStore(LOpcode op, LIns* o1, LIns* o2, int32_t disp, AccSet accSet);
            LIns*   ins0(LOpcode op);
            LIns*   ins1(LOpcode op, LIns* o1);
            LIns*   ins2(LOpcode op, LIns* o1, LIns* o2);
            LIns*   ins3(LOpcode op, LIns* o1, LIns* o2, LIns* o3);
            LIns*   insParam(int32_t i, int32_t kind);
            LIns*   insImmI(int32_t imm);
#ifdef NANOJIT_64BIT
            LIns*   insImmQ(uint64_t imm);
#endif
            LIns*   insImmD(double d);
            LIns*   insCall(const CallInfo *call, LIns* args[]);
            LIns*   insGuard(LOpcode op, LIns* cond, GuardRecord *gr);
            LIns*   insGuardXov(LOpcode op, LIns* a, LIns* b, GuardRecord *gr);
            LIns*   insBranch(LOpcode v, LIns* condition, LIns* to);
            LIns*   insBranchJov(LOpcode v, LIns* a, LIns* b, LIns* to);
            LIns*   insAlloc(int32_t size);
            LIns*   insJtbl(LIns* index, uint32_t size);
            LIns*   insComment(const char* str);
    };

    class LirFilter
    {
    public:
        LirFilter *in;
        LirFilter(LirFilter *in) : in(in) {}
        virtual ~LirFilter(){}

        // It's crucial that once this reaches the LIR_start at the beginning
        // of the buffer, that it just keeps returning that LIR_start LIns on
        // any subsequent calls.
        virtual LIns* read() {
            return in->read();
        }
        virtual LIns* finalIns() {
            return in->finalIns();
        }
    };

    // concrete
    class LirReader : public LirFilter
    {
        LIns* _ins;         // next instruction to be read;  invariant: is never a skip
        LIns* _finalIns;    // final instruction in the stream;  ie. the first one to be read

    public:
        LirReader(LIns* ins) : LirFilter(0), _ins(ins), _finalIns(ins)
        {
            // The last instruction for a fragment shouldn't be a skip.
            // (Actually, if the last *inserted* instruction exactly fills up
            // a chunk, a new chunk will be created, and thus the last *written*
            // instruction will be a skip -- the one needed for the
            // cross-chunk link.  But the last *inserted* instruction is what
            // is recorded and used to initialise each LirReader, and that is
            // what is seen here, and therefore this assertion holds.)
            NanoAssert(ins && !ins->isop(LIR_skip));
        }
        virtual ~LirReader() {}

        // Returns next instruction and advances to the prior instruction.
        // Invariant: never returns a skip.
        LIns* read();

        LIns* finalIns() {
            return _finalIns;
        }
    };

    verbose_only(void live(LirFilter* in, Allocator& alloc, Fragment* frag, LogControl*);)

    // WARNING: StackFilter assumes that all stack entries are eight bytes.
    // Some of its optimisations aren't valid if that isn't true.  See
    // StackFilter::read() for more details.
    class StackFilter: public LirFilter
    {
        LIns* sp;
        BitSet stk;
        int top;
        int getTop(LIns* br);

    public:
        StackFilter(LirFilter *in, Allocator& alloc, LIns* sp);
        LIns* read();
    };

    // This type is used to perform a simple interval analysis of 32-bit
    // add/sub/mul.  It lets us avoid overflow checks in some cases.
    struct Interval
    {
        // The bounds are 64-bit integers so that any overflow from a 32-bit
        // operation can be safely detected.
        //
        // If 'hasOverflowed' is false, 'lo' and 'hi' must be in the range
        // I32_MIN..I32_MAX.  If 'hasOverflowed' is true, 'lo' and 'hi' should
        // not be trusted (and in debug builds we set them both to a special
        // value UNTRUSTWORTHY that is outside the I32_MIN..I32_MAX range to
        // facilitate sanity checking).
        //
        int64_t lo;
        int64_t hi;
        bool hasOverflowed;

        static const int64_t I32_MIN = int64_t(int32_t(0x80000000));
        static const int64_t I32_MAX = int64_t(int32_t(0x7fffffff));

#ifdef DEBUG
        static const int64_t UNTRUSTWORTHY = int64_t(0xdeafdeadbeeffeedLL);

        bool isSane() {
            return (hasOverflowed && lo == UNTRUSTWORTHY && hi == UNTRUSTWORTHY) ||
                   (!hasOverflowed && lo <= hi && I32_MIN <= lo && hi <= I32_MAX);
        }
#endif

        Interval(int64_t lo_, int64_t hi_) {
            if (lo_ < I32_MIN || I32_MAX < hi_) {
                hasOverflowed = true;
#ifdef DEBUG
                lo = UNTRUSTWORTHY;
                hi = UNTRUSTWORTHY;
#endif
            } else {
                hasOverflowed = false;
                lo = lo_;
                hi = hi_;
            }
            NanoAssert(isSane());
        }

        static Interval OverflowInterval() {
            Interval interval(0, 0);
#ifdef DEBUG
            interval.lo = UNTRUSTWORTHY;
            interval.hi = UNTRUSTWORTHY;
#endif
            interval.hasOverflowed = true;
            return interval;
        }

        static Interval of(LIns* ins, int32_t lim);

        static Interval add(Interval x, Interval y);
        static Interval sub(Interval x, Interval y);
        static Interval mul(Interval x, Interval y);

        bool canBeZero() {
            NanoAssert(isSane());
            return hasOverflowed || (lo <= 0 && 0 <= hi);
        }

        bool canBeNegative() {
            NanoAssert(isSane());
            return hasOverflowed || (lo < 0);
        }
    };

#if NJ_SOFTFLOAT_SUPPORTED
    struct SoftFloatOps
    {
        const CallInfo* opmap[LIR_sentinel];
        SoftFloatOps();
    };

    extern const SoftFloatOps softFloatOps;

    // Replaces fpu ops with function calls, for platforms lacking float
    // hardware (eg. some ARM machines).
    class SoftFloatFilter: public LirWriter
    {
    public:
        static const CallInfo* opmap[LIR_sentinel];

        SoftFloatFilter(LirWriter *out);
        LIns *split(LIns *a);
        LIns *split(const CallInfo *call, LIns* args[]);
        LIns *callD1(const CallInfo *call, LIns *a);
        LIns *callD2(const CallInfo *call, LIns *a, LIns *b);
        LIns *callI1(const CallInfo *call, LIns *a);
        LIns *cmpD(const CallInfo *call, LIns *a, LIns *b);
        LIns *ins1(LOpcode op, LIns *a);
        LIns *ins2(LOpcode op, LIns *a, LIns *b);
        LIns *insCall(const CallInfo *ci, LIns* args[]);
    };
#endif

#ifdef DEBUG
    // This class does thorough checking of LIR.  It checks *implicit* LIR
    // instructions, ie. LIR instructions specified via arguments -- to
    // methods like insLoad() -- that have not yet been converted into
    // *explicit* LIns objects in a LirBuffer.  The reason for this is that if
    // we wait until the LIR instructions are explicit, they will have gone
    // through the entire writer pipeline and been optimised.  By checking
    // implicit LIR instructions we can check the LIR code at the start of the
    // writer pipeline, exactly as it is generated by the compiler front-end.
    //
    // A general note about the errors produced by this class:  for
    // TraceMonkey, they won't include special names for instructions that
    // have them unless TMFLAGS is specified.
    class ValidateWriter : public LirWriter
    {
    private:
        LInsPrinter* printer;
        const char* whereInPipeline;

        const char* type2string(LTy type);
        void typeCheckArgs(LOpcode op, int nArgs, LTy formals[], LIns* args[]);
        void errorStructureShouldBe(LOpcode op, const char* argDesc, int argN, LIns* arg,
                                    const char* shouldBeDesc);
        void errorAccSet(const char* what, AccSet accSet, const char* shouldDesc);
        void errorLoadQual(const char* what, LoadQual loadQual);
        void checkLInsHasOpcode(LOpcode op, int argN, LIns* ins, LOpcode op2);
        void checkLInsIsACondOrConst(LOpcode op, int argN, LIns* ins);
        void checkLInsIsNull(LOpcode op, int argN, LIns* ins);
        void checkAccSet(LOpcode op, LIns* base, int32_t disp, AccSet accSet);   // defined by the embedder

        // These can be set by the embedder and used in checkAccSet().
        void** checkAccSetExtras;

    public:
        ValidateWriter(LirWriter* out, LInsPrinter* printer, const char* where);
        void setCheckAccSetExtras(void** extras) { checkAccSetExtras = extras; }

        LIns* insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet, LoadQual loadQual);
        LIns* insStore(LOpcode op, LIns* value, LIns* base, int32_t d, AccSet accSet);
        LIns* ins0(LOpcode v);
        LIns* ins1(LOpcode v, LIns* a);
        LIns* ins2(LOpcode v, LIns* a, LIns* b);
        LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c);
        LIns* insParam(int32_t arg, int32_t kind);
        LIns* insImmI(int32_t imm);
#ifdef NANOJIT_64BIT
        LIns* insImmQ(uint64_t imm);
#endif
        LIns* insImmD(double d);
        LIns* insCall(const CallInfo *call, LIns* args[]);
        LIns* insGuard(LOpcode v, LIns *c, GuardRecord *gr);
        LIns* insGuardXov(LOpcode v, LIns* a, LIns* b, GuardRecord* gr);
        LIns* insBranch(LOpcode v, LIns* condition, LIns* to);
        LIns* insBranchJov(LOpcode v, LIns* a, LIns* b, LIns* to);
        LIns* insAlloc(int32_t size);
        LIns* insJtbl(LIns* index, uint32_t size);
    };

    // This just checks things that aren't possible to check in
    // ValidateWriter, eg. whether all branch targets are set and are labels.
    class ValidateReader: public LirFilter {
    public:
        ValidateReader(LirFilter* in);
        LIns* read();
    };
#endif

#ifdef NJ_VERBOSE
    /* A listing filter for LIR, going through backwards.  It merely
       passes its input to its output, but notes it down too.  When
       finish() is called, prints out what went through.  Is intended to be
       used to print arbitrary intermediate transformation stages of
       LIR. */
    class ReverseLister : public LirFilter
    {
        Allocator&   _alloc;
        LInsPrinter* _printer;
        const char*  _title;
        StringList   _strs;
        LogControl*  _logc;
        LIns*        _prevIns;
    public:
        ReverseLister(LirFilter* in, Allocator& alloc,
                      LInsPrinter* printer, LogControl* logc, const char* title)
            : LirFilter(in)
            , _alloc(alloc)
            , _printer(printer)
            , _title(title)
            , _strs(alloc)
            , _logc(logc)
            , _prevIns(NULL)
        { }

        void finish();
        LIns* read();
    };
#endif

}
#endif // __nanojit_LIR__