This file is indexed.

/usr/include/js/Containers.h is in libmozjs185-dev 1.8.5-1.0.0+dfsg-4.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4 -*- */
/* vi: set ts=4 sw=4 expandtab: (add to ~/.vimrc: set modeline modelines=5) */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is [Open Source Virtual Machine].
 *
 * The Initial Developer of the Original Code is
 * Adobe System Incorporated.
 * Portions created by the Initial Developer are Copyright (C) 2004-2007
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Adobe AS3 Team
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef __nanojit_Containers__
#define __nanojit_Containers__

namespace nanojit
{
    /** simple linear bit array, memory taken from Allocator
     *  warning: when bit array grows, old memory is wasted since it
     *  was allocated from Allocator.  pre-size the bitmap when possible
     *  by passing nbits to the constructor. */
    class BitSet {
        Allocator &allocator;
        int cap;
        int64_t *bits;
        static const int64_t ONE = 1;
        static const int SHIFT = 6;

        inline int bitnum2word(int i) {
            return i >> 6;
        }
        inline int64_t bitnum2mask(int i) {
            return ONE << (i & 63);
        }

        /** keep doubling array to fit at least w words */
        void grow(int w);

    public:
        BitSet(Allocator& allocator, int nbits=128);

        /** clear all bits */
        void reset();

        /** perform a bitwise or with BitSet other, return true if
         *  this bitset was modified */
        bool setFrom(BitSet& other);

        /** return bit i as a bool */
        bool get(int i) {
            NanoAssert(i >= 0);
            int w = bitnum2word(i);
            if (w < cap)
                return (bits[w] & bitnum2mask(i)) != 0;
            return false;
        }

        /** set bit i */
        void set(int i) {
            NanoAssert(i >= 0);
            int w = bitnum2word(i);
            if (w >= cap)
                grow(w);
            bits[w] |= bitnum2mask(i);
        }

        /** clear bit i */
        void clear(int i) {
            NanoAssert(i >= 0);
            int w = bitnum2word(i);
            if (w < cap)
                bits[w] &= ~bitnum2mask(i);
        }
    };

    /** Seq is a single node in a linked list */
    template<class T> class Seq {
    public:
        Seq(T head, Seq<T>* tail=NULL) : head(head), tail(tail) {}
        T       head;
        Seq<T>* tail;
    };

    /** SeqBuilder is used to create a linked list of Seq<T> by inserting
     *  nodes either at the beginning, with insert(), or at the end, with
     *  add().  Once built, the actual list can be retained while this
     *  SeqBuilder can be discarded.  */
    template<class T> class SeqBuilder {
    public:
        SeqBuilder(Allocator& allocator)
            : allocator(allocator)
            , items(NULL)
            , last(NULL)
        { }

        /** add item to beginning of list */
        void insert(T item) {
            Seq<T>* e = new (allocator) Seq<T>(item, items);
            if (last == NULL)
                last = e;
            items = e;
        }

        /** add item to end of list */
        void add(T item) {
            Seq<T>* e = new (allocator) Seq<T>(item);
            if (last == NULL)
                items = e;
            else
                last->tail = e;
            last = e;
        }

        /** return first item in sequence */
        Seq<T>* get() const {
            return items;
        }

        /** self explanitory */
        bool isEmpty() const {
            return items == NULL;
        }

        /** de-reference all items */
        void clear() {
            items = last = NULL;
        }

    private:
        Allocator& allocator;
        Seq<T>* items;
        Seq<T>* last;
    };

#ifdef NANOJIT_64BIT
    static inline size_t murmurhash(const void *key, size_t len) {
        const uint64_t m = 0xc6a4a7935bd1e995;
        const int r = 47;
        uint64_t h = 0;

        const uint64_t *data = (const uint64_t*)key;
        const uint64_t *end = data + (len/8);

        while(data != end)
            {
                uint64_t k = *data++;

                k *= m;
                k ^= k >> r;
                k *= m;

                h ^= k;
                h *= m;
            }

        const unsigned char *data2 = (const unsigned char*)data;

        switch(len & 7) {
        case 7: h ^= uint64_t(data2[6]) << 48;
        case 6: h ^= uint64_t(data2[5]) << 40;
        case 5: h ^= uint64_t(data2[4]) << 32;
        case 4: h ^= uint64_t(data2[3]) << 24;
        case 3: h ^= uint64_t(data2[2]) << 16;
        case 2: h ^= uint64_t(data2[1]) << 8;
        case 1: h ^= uint64_t(data2[0]);
            h *= m;
        };

        h ^= h >> r;
        h *= m;
        h ^= h >> r;

        return (size_t)h;
    }
#else
    static inline size_t murmurhash(const void * key, size_t len) {
        const uint32_t m = 0x5bd1e995;
        const int r = 24;
        uint32_t h = 0;

        const unsigned char * data = (const unsigned char *)key;
        while(len >= 4) {
            uint32_t k = *(size_t *)(void*)data;

            k *= m;
            k ^= k >> r;
            k *= m;

            h *= m;
            h ^= k;

            data += 4;
            len -= 4;
        }

        switch(len) {
        case 3: h ^= data[2] << 16;
        case 2: h ^= data[1] << 8;
        case 1: h ^= data[0];
            h *= m;
        };

        h ^= h >> 13;
        h *= m;
        h ^= h >> 15;

        return (size_t)h;
    }
#endif

    template<class K> struct DefaultHash {
        static size_t hash(const K &k) {
            // (const void*) cast is required by ARM RVCT 2.2
            return murmurhash((const void*) &k, sizeof(K));
        }
    };

    template<class K> struct DefaultHash<K*> {
        static size_t hash(K* k) {
            uintptr_t h = (uintptr_t) k;
            // move the low 3 bits higher up since they're often 0
            h = (h>>3) ^ (h<<((sizeof(uintptr_t) * 8) - 3));
            return (size_t) h;
        }
    };

    /** Bucket hashtable with a fixed # of buckets (never rehash)
     *  Intended for use when a reasonable # of buckets can be estimated ahead of time.
     *  Note that operator== is used to compare keys.
     */
    template<class K, class T, class H=DefaultHash<K> > class HashMap {
        Allocator& allocator;
        size_t nbuckets;
        class Node {
        public:
            K key;
            T value;
            Node(K k, T v) : key(k), value(v) { }
        };
        Seq<Node>** buckets;

        /** return the node containing K, and the bucket index, or NULL if not found */
        Node* find(K k, size_t &i) {
            i = H::hash(k) % nbuckets;
            for (Seq<Node>* p = buckets[i]; p != NULL; p = p->tail) {
                if (p->head.key == k)
                    return &p->head;
            }
            return NULL;
        }
    public:
        HashMap(Allocator& a, size_t nbuckets = 16)
            : allocator(a)
            , nbuckets(nbuckets)
            , buckets(new (a) Seq<Node>*[nbuckets])
        {
            NanoAssert(nbuckets > 0);
            clear();
        }

        /** clear all buckets.  Since we allocate all memory from Allocator,
         *  nothing needs to be freed. */
        void clear() {
            VMPI_memset(buckets, 0, sizeof(Seq<Node>*) * nbuckets);
        }

        /** add (k,v) to the map.  If k is already in the map, replace the value */
        void put(const K& k, const T& v) {
            size_t i;
            Node* n = find(k, i);
            if (n) {
                n->value = v;
                return;
            }
            buckets[i] = new (allocator) Seq<Node>(Node(k,v), buckets[i]);
        }

        /** return v for element k, or T(0) if k is not present */
        T get(const K& k) {
            size_t i;
            Node* n = find(k, i);
            return n ? n->value : 0;
        }

        /** returns true if k is in the map. */
        bool containsKey(const K& k) {
            size_t i;
            return find(k, i) != 0;
        }

        /** remove k from the map, if it is present.  if not, remove()
         *  silently returns */
        void remove(const K& k) {
            size_t i = H::hash(k) % nbuckets;
            Seq<Node>** prev = &buckets[i];
            for (Seq<Node>* p = buckets[i]; p != NULL; p = p->tail) {
                if (p->head.key == k) {
                    (*prev) = p->tail;
                    return;
                }
                prev = &p->tail;
            }
        }

        /** Iter is an iterator for HashMap, intended to be instantiated on
         *  the stack.  Iteration order is undefined.  Mutating the hashmap
         *  while iteration is in progress gives undefined results.  All iteration
         *  state is in class Iter, so multiple iterations can be in progress
         *  at the same time.  for example:
         *
         *  HashMap<K,T>::Iter iter(map);
         *  while (iter.next()) {
         *     K *k = iter.key();
         *     T *t = iter.value();
         *  }
         */
        class Iter {
            friend class HashMap;
            const HashMap<K,T,H> &map;
            int bucket;
            const Seq<Node>* current;

        public:
            Iter(HashMap<K,T,H>& map) : map(map), bucket((int)map.nbuckets-1), current(NULL)
            { }

            /** return true if more (k,v) remain to be visited */
            bool next() {
                if (current)
                    current = current->tail;
                while (bucket >= 0 && !current)
                    current = map.buckets[bucket--];
                return current != NULL;
            }

            /** return the current key */
            const K& key() const {
                NanoAssert(current != NULL);
                return current->head.key;
            }

            /** return the current value */
            const T& value() const {
                NanoAssert(current != NULL);
                return current->head.value;
            }
        };

        /** return true if the hashmap has no elements */
        bool isEmpty() {
            Iter iter(*this);
            return !iter.next();
        }
    };

    /**
     * Simple binary tree.  No balancing is performed under the assumption
     * that the only users of this structure are not performance critical.
     */
    template<class K, class T> class TreeMap {
        Allocator& alloc;
        class Node {
        public:
            Node* left;
            Node* right;
            K key;
            T value;
            Node(K k, T v) : left(NULL), right(NULL), key(k), value(v)
            { }
        };
        Node* root;

        /**
         * helper method to recursively insert (k,v) below Node n or a child
         * of n so that the binary search tree remains well formed.
         */
        void insert(Node* &n, K k, T v) {
            if (!n)
                n = new (alloc) Node(k, v);
            else if (k == n->key)
                n->value = v;
            else if (k < n->key)
                insert(n->left, k, v);
            else
                insert(n->right, k, v);
        }

        /**
         * search for key k below Node n and return n if found, or the
         * closest parent n where k should be inserted.
         */
        Node* find(Node* n, K k) {
            if (!n)
                return NULL;
            if (k == n->key)
                return n;
            if (k < n->key)
                return find(n->left, k);
            if (n->right)
                return find(n->right, k);
            return n;
        }

    public:
        TreeMap(Allocator& alloc) : alloc(alloc), root(NULL)
        { }

        /** set k = v in the map.  if k already exists, replace its value */
        void put(K k, T v) {
            insert(root, k, v);
        }

        /** return the closest key that is <= k, or NULL if k
            is smaller than every key in the Map. */
        K findNear(K k) {
            Node* n = find(root, k);
            return n ? n->key : 0;
        }

        /** returns the value for k or NULL */
        T get(K k) {
            Node* n = find(root, k);
            return (n && n->key == k) ? n->value : 0;
        }

        /** returns true iff k is in the Map. */
        bool containsKey(K k) {
            Node* n = find(root, k);
            return n && n->key == k;
        }

        /** make the tree empty.  trivial since we dont manage elements */
        void clear() {
            root = NULL;
        }
    };
}
#endif // __nanojit_Containers__