This file is indexed.

/usr/include/mlpack/methods/perceptron/perceptron.hpp is in libmlpack-dev 1.0.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
/**
 * @file perceptron.hpp
 * @author Udit Saxena
 *
 * Definition of Perceptron class.
 *
 * This file is part of MLPACK 1.0.10.
 *
 * MLPACK is free software: you can redistribute it and/or modify it under the
 * terms of the GNU Lesser General Public License as published by the Free
 * Software Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * MLPACK is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
 * A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
 * details (LICENSE.txt).
 *
 * You should have received a copy of the GNU General Public License along with
 * MLPACK.  If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef __MLPACK_METHODS_PERCEPTRON_PERCEPTRON_HPP
#define __MLPACK_METHODS_PERCEPTRON_PERCEPTRON_HPP

#include <mlpack/core.hpp>

#include "initialization_methods/zero_init.hpp"
#include "initialization_methods/random_init.hpp"
#include "learning_policies/simple_weight_update.hpp"

namespace mlpack {
namespace perceptron {

/**
 * This class implements a simple perceptron (i.e., a single layer neural
 * network).  It converges if the supplied training dataset is linearly
 * separable.
 *
 * @tparam LearnPolicy Options of SimpleWeightUpdate and GradientDescent.
 * @tparam WeightInitializationPolicy Option of ZeroInitialization and
 *      RandomInitialization.
 */
template<typename LearnPolicy = SimpleWeightUpdate,
         typename WeightInitializationPolicy = ZeroInitialization,
         typename MatType = arma::mat>
class Perceptron
{
 public:
  /**
   * Constructor - constructs the perceptron by building the weightVectors
   * matrix, which is later used in Classification.  It adds a bias input vector
   * of 1 to the input data to take care of the bias weights.
   *
   * @param data Input, training data.
   * @param labels Labels of dataset.
   * @param iterations Maximum number of iterations for the perceptron learning
   *     algorithm.
   */
  Perceptron(const MatType& data, const arma::Row<size_t>& labels, int iterations);

  /**
   * Classification function. After training, use the weightVectors matrix to
   * classify test, and put the predicted classes in predictedLabels.
   *
   * @param test Testing data or data to classify.
   * @param predictedLabels Vector to store the predicted classes after
   *     classifying test.
   */
  void Classify(const MatType& test, arma::Row<size_t>& predictedLabels);

  /**
   *  Alternate constructor which copies parameters from an already initiated 
   *  perceptron.
   *  
   *  @param other The other initiated Perceptron object from which we copy the
   *               values from.
   *  @param data The data on which to train this Perceptron object on.
   *  @param D Weight vector to use while training. For boosting purposes.
   *  @param labels The labels of data.
   */
  Perceptron(const Perceptron<>& other, MatType& data, const arma::rowvec& D, const arma::Row<size_t>& labels);

private:
  //! To store the number of iterations
  size_t iter;

  //! Stores the class labels for the input data.
  arma::Row<size_t> classLabels;

  //! Stores the weight vectors for each of the input class labels.
  arma::mat weightVectors;

  //! Stores the training data to be used later on in UpdateWeights.
  arma::mat trainData;

  /**
   *  Training Function. It trains on trainData using the cost matrix D
   *  
   *  @param D Cost matrix. Stores the cost of mispredicting instances
   */
  void Train(const arma::rowvec& D);
};

} // namespace perceptron
} // namespace mlpack

#include "perceptron_impl.hpp"

#endif