This file is indexed.

/usr/include/mia-2.2/mia/3d/interpolator.cxx is in libmia-2.2-dev 2.2.2-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/* -*- mia-c++  -*-
 *
 * This file is part of MIA - a toolbox for medical image analysis 
 * Copyright (c) Leipzig, Madrid 1999-2014 Gert Wollny
 *
 * MIA is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with MIA; if not, see <http://www.gnu.org/licenses/>.
 *
 */

#include <cmath>

#include <mia/core/threadedmsg.hh>
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>

NS_MIA_BEGIN

template <class T>
struct min_max_3d {
	static void get( const T3DDatafield<T>& data, T* min, T*max)
	{
		typename T3DDatafield<T>::const_iterator i = data.begin(); 
		typename T3DDatafield<T>::const_iterator e = data.end(); 
		*min = *max = *i++; 
		
		while (i != e) {
			if (*i > *max) *max = *i; 
			if (*i < *min) *min = *i; 
			++i; 
		}
	}
};

template <class  T>
struct min_max_3d<T3DVector<T> > {
	static void get( const T3DDatafield<T3DVector<T> >& data, T3DVector<T>* min, T3DVector<T>*max)
	{
		typename T3DDatafield<T3DVector<T> >::const_iterator i = data.begin(); 
		typename T3DDatafield<T3DVector<T> >::const_iterator e = data.end(); 
		*min = *max = *i++; 
		
		while (i != e) {
			if (i->x > max->x) max->x = i->x; 
			if (i->y > max->y) max->y = i->y; 
			if (i->z > max->z) max->z = i->z; 
			if (i->x < min->x) min->x = i->x; 
			if (i->y < min->y) min->y = i->y; 
			if (i->z < min->z) min->z = i->z; 
			++i; 
		}
	}
};


template <typename T>
T3DConvoluteInterpolator<T>::T3DConvoluteInterpolator(const T3DDatafield<T>& image, PSplineKernel  kernel):
	m_coeff(image.get_size()), 
	m_size2(image.get_size() + image.get_size()-C3DBounds(2,2,2)),
	m_kernel(kernel),
	m_xbc(produce_spline_boundary_condition("mirror")), 
	m_ybc(produce_spline_boundary_condition("mirror")),
	m_zbc(produce_spline_boundary_condition("mirror")),
	m_x_cache(kernel->size(), *m_xbc, m_kernel->size() < 3), 
	m_y_cache(kernel->size(), *m_ybc, true), 
	m_z_cache(kernel->size(), *m_zbc, true)
{

	prefilter(image); 
}
	
template <typename T>
T3DConvoluteInterpolator<T>::T3DConvoluteInterpolator(const T3DDatafield<T>& image, PSplineKernel  kernel, 
				 const CSplineBoundaryCondition& xbc,  
				 const CSplineBoundaryCondition& ybc, 
				 const CSplineBoundaryCondition& zbc):
	m_coeff(image.get_size()), 
	m_size2(image.get_size() + image.get_size()-C3DBounds(2,2,2)),
	m_kernel(kernel),
	m_xbc(xbc.clone()), 
	m_ybc(ybc.clone()),
	m_zbc(zbc.clone()),
	m_x_cache(kernel->size(), *m_xbc, m_kernel->size() < 3), 
	m_y_cache(kernel->size(), *m_ybc, true), 
	m_z_cache(kernel->size(), *m_zbc, true)
{
	prefilter(image); 
}


template <typename T>
void T3DConvoluteInterpolator<T>::prefilter(const T3DDatafield<T>& image) 
{

	m_xbc->set_width(image.get_size().x); 
	m_x_cache.reset(); 
	m_ybc->set_width(image.get_size().y); 
	m_y_cache.reset(); 
	m_zbc->set_width(image.get_size().z);
	m_z_cache.reset(); 

	min_max_3d<T>::get(image, &m_min, &m_max);
	// we always allow that a pixel is set to zero
	if (T() < m_min) 
		m_min = T(); 

	std::copy(image.begin(), image.end(), m_coeff.begin());


	auto poles = m_kernel->get_poles(); 
	if (poles.empty()) 
		return; 
	
	int cachXSize = image.get_size().x;	
	int cachYSize = image.get_size().y;
	int cachZSize = image.get_size().z;
	

	auto filter_x = [this, cachXSize, cachYSize, poles](const tbb::blocked_range<size_t>& range_z) {
		coeff_vector buffer(cachXSize);
		for (auto z = range_z.begin(); z != range_z.end() ; ++z){
			for (int y = 0; y < cachYSize; y++) {
				m_coeff.get_data_line_x(y,z,buffer);
				m_xbc->filter_line(buffer, poles);
				m_coeff.put_data_line_x(y,z,buffer);
			}
		}
	};
	parallel_for(tbb::blocked_range<size_t>(0, cachZSize, 1), filter_x); 
	
	
	auto filter_y = [this, cachXSize, cachYSize, poles](const tbb::blocked_range<size_t>& range_z) {
		coeff_vector buffer(cachYSize);
		for (auto z = range_z.begin(); z  != range_z.end() ; ++z){
			for (int x = 0; x < cachXSize; x++) {
				m_coeff.get_data_line_y(x,z,buffer);
				m_ybc->filter_line(buffer, poles);
				m_coeff.put_data_line_y(x,z,buffer);
			}
		}
	};
	parallel_for(tbb::blocked_range<size_t>(0, cachZSize, 1), filter_y); 
	

	auto filter_z = [this, cachXSize, cachZSize, poles](const tbb::blocked_range<size_t>& range_y) {
		coeff_vector buffer(cachZSize);
		for (auto y = range_y.begin(); y  != range_y.end() ; ++y){
			for (int x = 0; x < cachXSize; x++) {
				m_coeff.get_data_line_z(x,y,buffer);
				m_zbc->filter_line(buffer, poles);
				m_coeff.put_data_line_z(x,y,buffer);
			}
		}
	};
	parallel_for(tbb::blocked_range<size_t>(0, cachYSize, 1), filter_z); 

}

template <typename T>
CWeightCache T3DConvoluteInterpolator<T>::create_cache() const
{
	return CWeightCache(m_kernel->size(), *m_xbc, *m_ybc, *m_zbc); 
}

template <typename T>
T3DConvoluteInterpolator<T>::~T3DConvoluteInterpolator()
{
}
	
template <class T, class U>
struct bounded<T3DVector<T>, T3DVector<U> > {
	static void apply(T3DVector<T>& r, const T3DVector<U>& min, const T3DVector<U>& max)
	{
		r.x = (r.x >= min.x) ? ( (r.x <= max.x) ? r.x : max.x) : min.x;
		r.y = (r.y >= min.y) ? ( (r.y <= max.y) ? r.y : max.y) : min.y;
		r.z = (r.z >= min.z) ? ( (r.z <= max.z) ? r.z : max.z) : min.z;		
	}
};

template <class C, int size>
struct add_3d {
	typedef typename C::value_type U; 
	
	static typename C::value_type value(const C&  coeff, const CSplineKernel::SCache& xc, 
					    const CSplineKernel::SCache& yc,
					    const CSplineKernel::SCache& zc) 
	{
		U result = U();
		
		for (size_t z = 0; z < size; ++z) {
			U ry = U();
			for (size_t y = 0; y < size; ++y) {
				U rx = U();
				const U *p = &coeff(0, yc.index[y], zc.index[z]);
				for (size_t x = 0; x < size; ++x) {
					int xinx = xc.is_flat ? xc.start_idx +x : xc.index[x]; 
					rx += xc.weights[x] * p[xinx];
				}
				ry += yc.weights[y] * rx; 
			}
			result += zc.weights[z] * ry; 
		}
		return result; 
	}
};

template <typename T>
struct add_3d<T3DDatafield< T >, 1> {
	static T value(const T3DDatafield< T >&  coeff, 
		       const CSplineKernel::SCache& xc, 
		       const CSplineKernel::SCache& yc,
		       const CSplineKernel::SCache& zc) 
		{
			return xc.weights[0] *  yc.weights[0] * zc.weights[0] * 
				coeff(xc.index[0], yc.index[0], zc.index[0] ) ; 
		}
};


#ifdef __SSE2__
template <>
struct add_3d<T3DDatafield< double >, 2> {
	static double value(const T3DDatafield< double >&  coeff, 
			    const CSplineKernel::SCache& xc, 
			    const CSplineKernel::SCache& yc,
			    const CSplineKernel::SCache& zc); 
	
};

template <>
struct add_3d<T3DDatafield< double >, 4> {
	static double value(const T3DDatafield< double >&  coeff, 
			    const CSplineKernel::SCache& xc, 
			    const CSplineKernel::SCache& yc,
			    const CSplineKernel::SCache& zc); 
	
};
#endif

#ifdef __SSE__
template <>
struct add_3d<T3DDatafield< float >, 4> {
	static float value(const T3DDatafield< float >&  coeff, 
			    const CSplineKernel::SCache& xc, 
			    const CSplineKernel::SCache& yc,
			    const CSplineKernel::SCache& zc); 
	
};
template <>
struct add_3d<T3DDatafield< float >, 2> {
	static float value(const T3DDatafield< float >&  coeff, 
			    const CSplineKernel::SCache& xc, 
			    const CSplineKernel::SCache& yc,
			    const CSplineKernel::SCache& zc); 
	
};

#endif

template <typename T>
T  T3DConvoluteInterpolator<T>::operator () (const C3DFVector& x, CWeightCache& cache) const
{
	typedef typename TCoeff3D::value_type U; 
	
	// x will usually be the fastest changing index, therefore, it is of no use to use the cache 
	// at the same time it's access may be handled "flat" 
	m_kernel->get_uncached(x.x, cache.x);

	// the other two coordinates are changing slowly and caching makes sense 
	// however, the index set will always be fully evaluated 
	if (x.y != cache.y.x) 
		m_kernel->get_cached(x.y, cache.y);
	
	if (x.z != cache.z.x) 
		m_kernel->get_cached(x.z, cache.z);
	
	U result = U();
	// now we give the compiler a chance to optimize based on kernel size and data type.  
	// Some of these call also use template specialization to provide an optimized code path.  
	// With SSE and SSE2 available kernel sizes 2 and 4 and the use of float and double 
	// scalar fields are optimized.
	switch (m_kernel->size()) {
	case 1: result = add_3d<TCoeff3D,1>::value(m_coeff, cache.x, cache.y, cache.z); break; 
	case 2: result = add_3d<TCoeff3D,2>::value(m_coeff, cache.x, cache.y, cache.z); break; 
	case 3: result = add_3d<TCoeff3D,3>::value(m_coeff, cache.x, cache.y, cache.z); break; 
	case 4: result = add_3d<TCoeff3D,4>::value(m_coeff, cache.x, cache.y, cache.z); break; 
	case 5: result = add_3d<TCoeff3D,5>::value(m_coeff, cache.x, cache.y, cache.z); break; 
	case 6: result = add_3d<TCoeff3D,6>::value(m_coeff, cache.x, cache.y, cache.z); break; 
	default: {
		assert(0 && "kernel sizes above 5 are not implemented"); 
	}
	} // end switch 
	
	bounded<U, T>::apply(result, m_min, m_max);
	
	return round_to<U, T>::value(result); 
}

template <typename T>
T  T3DConvoluteInterpolator<T>::operator () (const C3DFVector& x) const
{
	CScopedLock lock(m_cache_lock);
	typedef typename TCoeff3D::value_type U; 
	
	// x will usually be the fastest changing index, therefore, it is of no use to use the cache 
	// at the same time it's access may be handled "flat" 
	m_kernel->get_uncached(x.x, m_x_cache);

	// the other two coordinates are changing slowly and caching makes sense 
	// however, the index set will always be fully evaluated 
	if (x.y != m_y_cache.x) 
		m_kernel->get_cached(x.y, m_y_cache);
	
	if (x.z != m_z_cache.x) 
		m_kernel->get_cached(x.z, m_z_cache);	
	
	U result = U();
	// now we give the compiler a chance to optimize based on kernel size and data type.  
	// Some of these call also use template specialization to provide an optimized code path.  
	// With SSE and SSE2 available kernel sizes 2 and 4 and the use of float and double 
	// scalar fields are optimized.
	switch (m_kernel->size()) {
	case 1: result = add_3d<TCoeff3D,1>::value(m_coeff, m_x_cache, m_y_cache, m_z_cache); break; 
	case 2: result = add_3d<TCoeff3D,2>::value(m_coeff, m_x_cache, m_y_cache, m_z_cache); break; 
	case 3: result = add_3d<TCoeff3D,3>::value(m_coeff, m_x_cache, m_y_cache, m_z_cache); break; 
	case 4: result = add_3d<TCoeff3D,4>::value(m_coeff, m_x_cache, m_y_cache, m_z_cache); break; 
	case 5: result = add_3d<TCoeff3D,5>::value(m_coeff, m_x_cache, m_y_cache, m_z_cache); break; 
	case 6: result = add_3d<TCoeff3D,6>::value(m_coeff, m_x_cache, m_y_cache, m_z_cache); break; 
	default: {
		assert(0 && "kernel sizes above 5 are not implemented"); 
	}
	} // end switch 
	
	bounded<U, T>::apply(result, m_min, m_max);
	
	return round_to<U, T>::value(result); 
}

NS_MIA_END