/usr/include/liggghts/math_extra.h is in libliggghts-dev 3.0.3+repack-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 | /* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Mike Brown (SNL)
------------------------------------------------------------------------- */
#ifndef LMP_MATH_EXTRA_H
#define LMP_MATH_EXTRA_H
#include "math.h"
#include "stdio.h"
#include "string.h"
#include "error.h"
namespace MathExtra {
// 3 vector operations
inline void norm3(double *v);
inline void normalize3(const double *v, double *ans);
inline void snormalize3(const double, const double *v, double *ans);
inline void negate3(double *v);
inline void scale3(double s, double *v);
inline void add3(const double *v1, const double *v2, double *ans);
inline void sub3(const double *v1, const double *v2, double *ans);
inline double len3(const double *v);
inline double lensq3(const double *v);
inline double dot3(const double *v1, const double *v2);
inline void cross3(const double *v1, const double *v2, double *ans);
// 3x3 matrix operations
inline void col2mat(const double *ex, const double *ey, const double *ez,
double m[3][3]);
inline double det3(const double mat[3][3]);
inline void diag_times3(const double *d, const double m[3][3],
double ans[3][3]);
inline void times3_diag(const double m[3][3], const double *d,
double ans[3][3]);
inline void plus3(const double m[3][3], const double m2[3][3],
double ans[3][3]);
inline void times3(const double m[3][3], const double m2[3][3],
double ans[3][3]);
inline void transpose_times3(const double m[3][3], const double m2[3][3],
double ans[3][3]);
inline void times3_transpose(const double m[3][3], const double m2[3][3],
double ans[3][3]);
inline void invert3(const double mat[3][3], double ans[3][3]);
inline void matvec(const double mat[3][3], const double*vec, double *ans);
inline void matvec(const double *ex, const double *ey, const double *ez,
const double *vec, double *ans);
inline void transpose_matvec(const double mat[3][3], const double*vec,
double *ans);
inline void transpose_matvec(const double *ex, const double *ey,
const double *ez, const double *v,
double *ans);
inline void transpose_diag3(const double m[3][3], const double *d,
double ans[3][3]);
inline void vecmat(const double *v, const double m[3][3], double *ans);
inline void scalar_times3(const double f, double m[3][3]);
void write3(const double mat[3][3]);
int mldivide3(const double mat[3][3], const double *vec, double *ans);
int jacobi(double matrix[3][3], double *evalues, double evectors[3][3]);
int jacobi(double **matrix, double *evalues, double **evectors);
void rotate(double matrix[3][3], int i, int j, int k, int l,
double s, double tau);
void rotate(double **matrix, int i, int j, int k, int l,
double s, double tau);
void richardson(double *q, double *m, double *w, double *moments, double dtq);
// shape matrix operations
// upper-triangular 3x3 matrix stored in Voigt notation as 6-vector
inline void multiply_shape_shape(const double *one, const double *two,
double *ans);
// quaternion operations
inline void qnormalize(double *q);
inline void qconjugate(double *q, double *qc);
inline void vecquat(double *a, double *b, double *c);
inline void quatvec(double *a, double *b, double *c);
inline void quatquat(double *a, double *b, double *c);
inline void invquatvec(double *a, double *b, double *c);
inline void axisangle_to_quat(const double *v, const double angle,
double *quat);
void angmom_to_omega(double *m, double *ex, double *ey, double *ez,
double *idiag, double *w);
void omega_to_angmom(double *w, double *ex, double *ey, double *ez,
double *idiag, double *m);
void mq_to_omega(double *m, double *q, double *moments, double *w);
void exyz_to_q(double *ex, double *ey, double *ez, double *q);
void q_to_exyz(double *q, double *ex, double *ey, double *ez);
void quat_to_mat(const double *quat, double mat[3][3]);
void quat_to_mat_trans(const double *quat, double mat[3][3]);
// rotation operations
inline void rotation_generator_x(const double m[3][3], double ans[3][3]);
inline void rotation_generator_y(const double m[3][3], double ans[3][3]);
inline void rotation_generator_z(const double m[3][3], double ans[3][3]);
// moment of inertia operations
void inertia_ellipsoid(double *shape, double *quat, double mass,
double *inertia);
void inertia_line(double length, double theta, double mass,
double *inertia);
void inertia_triangle(double *v0, double *v1, double *v2,
double mass, double *inertia);
void inertia_triangle(double *idiag, double *quat, double mass,
double *inertia);
}
/* ----------------------------------------------------------------------
normalize a vector in place
------------------------------------------------------------------------- */
void MathExtra::norm3(double *v)
{
double scale = 1.0/sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
v[0] *= scale;
v[1] *= scale;
v[2] *= scale;
}
/* ----------------------------------------------------------------------
normalize a vector, return in ans
------------------------------------------------------------------------- */
void MathExtra::normalize3(const double *v, double *ans)
{
double scale = 1.0/sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
ans[0] = v[0]*scale;
ans[1] = v[1]*scale;
ans[2] = v[2]*scale;
}
/* ----------------------------------------------------------------------
scale a vector to length
------------------------------------------------------------------------- */
void MathExtra::snormalize3(const double length, const double *v, double *ans)
{
double scale = length/sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
ans[0] = v[0]*scale;
ans[1] = v[1]*scale;
ans[2] = v[2]*scale;
}
/* ----------------------------------------------------------------------
negate vector v
------------------------------------------------------------------------- */
void MathExtra::negate3(double *v)
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
/* ----------------------------------------------------------------------
scale vector v by s
------------------------------------------------------------------------- */
void MathExtra::scale3(double s, double *v)
{
v[0] *= s;
v[1] *= s;
v[2] *= s;
}
/* ----------------------------------------------------------------------
ans = v1 + v2
------------------------------------------------------------------------- */
void MathExtra::add3(const double *v1, const double *v2, double *ans)
{
ans[0] = v1[0] + v2[0];
ans[1] = v1[1] + v2[1];
ans[2] = v1[2] + v2[2];
}
/* ----------------------------------------------------------------------
ans = v1 - v2
------------------------------------------------------------------------- */
void MathExtra::sub3(const double *v1, const double *v2, double *ans)
{
ans[0] = v1[0] - v2[0];
ans[1] = v1[1] - v2[1];
ans[2] = v1[2] - v2[2];
}
/* ----------------------------------------------------------------------
length of vector v
------------------------------------------------------------------------- */
double MathExtra::len3(const double *v)
{
return sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
/* ----------------------------------------------------------------------
squared length of vector v, or dot product of v with itself
------------------------------------------------------------------------- */
double MathExtra::lensq3(const double *v)
{
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}
/* ----------------------------------------------------------------------
dot product of 2 vectors
------------------------------------------------------------------------- */
double MathExtra::dot3(const double *v1, const double *v2)
{
return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
}
/* ----------------------------------------------------------------------
cross product of 2 vectors
------------------------------------------------------------------------- */
void MathExtra::cross3(const double *v1, const double *v2, double *ans)
{
ans[0] = v1[1]*v2[2] - v1[2]*v2[1];
ans[1] = v1[2]*v2[0] - v1[0]*v2[2];
ans[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
/* ----------------------------------------------------------------------
construct matrix from 3 column vectors
------------------------------------------------------------------------- */
void MathExtra::col2mat(const double *ex, const double *ey, const double *ez,
double m[3][3])
{
m[0][0] = ex[0];
m[1][0] = ex[1];
m[2][0] = ex[2];
m[0][1] = ey[0];
m[1][1] = ey[1];
m[2][1] = ey[2];
m[0][2] = ez[0];
m[1][2] = ez[1];
m[2][2] = ez[2];
}
/* ----------------------------------------------------------------------
determinant of a matrix
------------------------------------------------------------------------- */
double MathExtra::det3(const double m[3][3])
{
double ans = m[0][0]*m[1][1]*m[2][2] - m[0][0]*m[1][2]*m[2][1] -
m[1][0]*m[0][1]*m[2][2] + m[1][0]*m[0][2]*m[2][1] +
m[2][0]*m[0][1]*m[1][2] - m[2][0]*m[0][2]*m[1][1];
return ans;
}
/* ----------------------------------------------------------------------
diagonal matrix times a full matrix
------------------------------------------------------------------------- */
void MathExtra::diag_times3(const double *d, const double m[3][3],
double ans[3][3])
{
ans[0][0] = d[0]*m[0][0];
ans[0][1] = d[0]*m[0][1];
ans[0][2] = d[0]*m[0][2];
ans[1][0] = d[1]*m[1][0];
ans[1][1] = d[1]*m[1][1];
ans[1][2] = d[1]*m[1][2];
ans[2][0] = d[2]*m[2][0];
ans[2][1] = d[2]*m[2][1];
ans[2][2] = d[2]*m[2][2];
}
/* ----------------------------------------------------------------------
full matrix times a diagonal matrix
------------------------------------------------------------------------- */
void MathExtra::times3_diag(const double m[3][3], const double *d,
double ans[3][3])
{
ans[0][0] = m[0][0]*d[0];
ans[0][1] = m[0][1]*d[1];
ans[0][2] = m[0][2]*d[2];
ans[1][0] = m[1][0]*d[0];
ans[1][1] = m[1][1]*d[1];
ans[1][2] = m[1][2]*d[2];
ans[2][0] = m[2][0]*d[0];
ans[2][1] = m[2][1]*d[1];
ans[2][2] = m[2][2]*d[2];
}
/* ----------------------------------------------------------------------
add two matrices
------------------------------------------------------------------------- */
void MathExtra::plus3(const double m[3][3], const double m2[3][3],
double ans[3][3])
{
ans[0][0] = m[0][0]+m2[0][0];
ans[0][1] = m[0][1]+m2[0][1];
ans[0][2] = m[0][2]+m2[0][2];
ans[1][0] = m[1][0]+m2[1][0];
ans[1][1] = m[1][1]+m2[1][1];
ans[1][2] = m[1][2]+m2[1][2];
ans[2][0] = m[2][0]+m2[2][0];
ans[2][1] = m[2][1]+m2[2][1];
ans[2][2] = m[2][2]+m2[2][2];
}
/* ----------------------------------------------------------------------
multiply mat1 times mat2
------------------------------------------------------------------------- */
void MathExtra::times3(const double m[3][3], const double m2[3][3],
double ans[3][3])
{
ans[0][0] = m[0][0]*m2[0][0] + m[0][1]*m2[1][0] + m[0][2]*m2[2][0];
ans[0][1] = m[0][0]*m2[0][1] + m[0][1]*m2[1][1] + m[0][2]*m2[2][1];
ans[0][2] = m[0][0]*m2[0][2] + m[0][1]*m2[1][2] + m[0][2]*m2[2][2];
ans[1][0] = m[1][0]*m2[0][0] + m[1][1]*m2[1][0] + m[1][2]*m2[2][0];
ans[1][1] = m[1][0]*m2[0][1] + m[1][1]*m2[1][1] + m[1][2]*m2[2][1];
ans[1][2] = m[1][0]*m2[0][2] + m[1][1]*m2[1][2] + m[1][2]*m2[2][2];
ans[2][0] = m[2][0]*m2[0][0] + m[2][1]*m2[1][0] + m[2][2]*m2[2][0];
ans[2][1] = m[2][0]*m2[0][1] + m[2][1]*m2[1][1] + m[2][2]*m2[2][1];
ans[2][2] = m[2][0]*m2[0][2] + m[2][1]*m2[1][2] + m[2][2]*m2[2][2];
}
/* ----------------------------------------------------------------------
multiply the transpose of mat1 times mat2
------------------------------------------------------------------------- */
void MathExtra::transpose_times3(const double m[3][3], const double m2[3][3],
double ans[3][3])
{
ans[0][0] = m[0][0]*m2[0][0] + m[1][0]*m2[1][0] + m[2][0]*m2[2][0];
ans[0][1] = m[0][0]*m2[0][1] + m[1][0]*m2[1][1] + m[2][0]*m2[2][1];
ans[0][2] = m[0][0]*m2[0][2] + m[1][0]*m2[1][2] + m[2][0]*m2[2][2];
ans[1][0] = m[0][1]*m2[0][0] + m[1][1]*m2[1][0] + m[2][1]*m2[2][0];
ans[1][1] = m[0][1]*m2[0][1] + m[1][1]*m2[1][1] + m[2][1]*m2[2][1];
ans[1][2] = m[0][1]*m2[0][2] + m[1][1]*m2[1][2] + m[2][1]*m2[2][2];
ans[2][0] = m[0][2]*m2[0][0] + m[1][2]*m2[1][0] + m[2][2]*m2[2][0];
ans[2][1] = m[0][2]*m2[0][1] + m[1][2]*m2[1][1] + m[2][2]*m2[2][1];
ans[2][2] = m[0][2]*m2[0][2] + m[1][2]*m2[1][2] + m[2][2]*m2[2][2];
}
/* ----------------------------------------------------------------------
multiply mat1 times transpose of mat2
------------------------------------------------------------------------- */
void MathExtra::times3_transpose(const double m[3][3], const double m2[3][3],
double ans[3][3])
{
ans[0][0] = m[0][0]*m2[0][0] + m[0][1]*m2[0][1] + m[0][2]*m2[0][2];
ans[0][1] = m[0][0]*m2[1][0] + m[0][1]*m2[1][1] + m[0][2]*m2[1][2];
ans[0][2] = m[0][0]*m2[2][0] + m[0][1]*m2[2][1] + m[0][2]*m2[2][2];
ans[1][0] = m[1][0]*m2[0][0] + m[1][1]*m2[0][1] + m[1][2]*m2[0][2];
ans[1][1] = m[1][0]*m2[1][0] + m[1][1]*m2[1][1] + m[1][2]*m2[1][2];
ans[1][2] = m[1][0]*m2[2][0] + m[1][1]*m2[2][1] + m[1][2]*m2[2][2];
ans[2][0] = m[2][0]*m2[0][0] + m[2][1]*m2[0][1] + m[2][2]*m2[0][2];
ans[2][1] = m[2][0]*m2[1][0] + m[2][1]*m2[1][1] + m[2][2]*m2[1][2];
ans[2][2] = m[2][0]*m2[2][0] + m[2][1]*m2[2][1] + m[2][2]*m2[2][2];
}
/* ----------------------------------------------------------------------
invert a matrix
does NOT checks for singular or badly scaled matrix
------------------------------------------------------------------------- */
void MathExtra::invert3(const double m[3][3], double ans[3][3])
{
double den = m[0][0]*m[1][1]*m[2][2]-m[0][0]*m[1][2]*m[2][1];
den += -m[1][0]*m[0][1]*m[2][2]+m[1][0]*m[0][2]*m[2][1];
den += m[2][0]*m[0][1]*m[1][2]-m[2][0]*m[0][2]*m[1][1];
ans[0][0] = (m[1][1]*m[2][2]-m[1][2]*m[2][1]) / den;
ans[0][1] = -(m[0][1]*m[2][2]-m[0][2]*m[2][1]) / den;
ans[0][2] = (m[0][1]*m[1][2]-m[0][2]*m[1][1]) / den;
ans[1][0] = -(m[1][0]*m[2][2]-m[1][2]*m[2][0]) / den;
ans[1][1] = (m[0][0]*m[2][2]-m[0][2]*m[2][0]) / den;
ans[1][2] = -(m[0][0]*m[1][2]-m[0][2]*m[1][0]) / den;
ans[2][0] = (m[1][0]*m[2][1]-m[1][1]*m[2][0]) / den;
ans[2][1] = -(m[0][0]*m[2][1]-m[0][1]*m[2][0]) / den;
ans[2][2] = (m[0][0]*m[1][1]-m[0][1]*m[1][0]) / den;
}
/* ----------------------------------------------------------------------
matrix times vector
------------------------------------------------------------------------- */
void MathExtra::matvec(const double m[3][3], const double *v, double *ans)
{
ans[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
ans[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
ans[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
}
/* ----------------------------------------------------------------------
matrix times vector
------------------------------------------------------------------------- */
void MathExtra::matvec(const double *ex, const double *ey, const double *ez,
const double *v, double *ans)
{
ans[0] = ex[0]*v[0] + ey[0]*v[1] + ez[0]*v[2];
ans[1] = ex[1]*v[0] + ey[1]*v[1] + ez[1]*v[2];
ans[2] = ex[2]*v[0] + ey[2]*v[1] + ez[2]*v[2];
}
/* ----------------------------------------------------------------------
transposed matrix times vector
------------------------------------------------------------------------- */
void MathExtra::transpose_matvec(const double m[3][3], const double *v,
double *ans)
{
ans[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
ans[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
ans[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
}
/* ----------------------------------------------------------------------
transposed matrix times vector
------------------------------------------------------------------------- */
void MathExtra::transpose_matvec(const double *ex, const double *ey,
const double *ez, const double *v,
double *ans)
{
ans[0] = ex[0]*v[0] + ex[1]*v[1] + ex[2]*v[2];
ans[1] = ey[0]*v[0] + ey[1]*v[1] + ey[2]*v[2];
ans[2] = ez[0]*v[0] + ez[1]*v[1] + ez[2]*v[2];
}
/* ----------------------------------------------------------------------
transposed matrix times diagonal matrix
------------------------------------------------------------------------- */
void MathExtra::transpose_diag3(const double m[3][3], const double *d,
double ans[3][3])
{
ans[0][0] = m[0][0]*d[0];
ans[0][1] = m[1][0]*d[1];
ans[0][2] = m[2][0]*d[2];
ans[1][0] = m[0][1]*d[0];
ans[1][1] = m[1][1]*d[1];
ans[1][2] = m[2][1]*d[2];
ans[2][0] = m[0][2]*d[0];
ans[2][1] = m[1][2]*d[1];
ans[2][2] = m[2][2]*d[2];
}
/* ----------------------------------------------------------------------
row vector times matrix
------------------------------------------------------------------------- */
void MathExtra::vecmat(const double *v, const double m[3][3], double *ans)
{
ans[0] = v[0]*m[0][0] + v[1]*m[1][0] + v[2]*m[2][0];
ans[1] = v[0]*m[0][1] + v[1]*m[1][1] + v[2]*m[2][1];
ans[2] = v[0]*m[0][2] + v[1]*m[1][2] + v[2]*m[2][2];
}
/* ----------------------------------------------------------------------
matrix times scalar, in place
------------------------------------------------------------------------- */
inline void MathExtra::scalar_times3(const double f, double m[3][3])
{
m[0][0] *= f; m[0][1] *= f; m[0][2] *= f;
m[1][0] *= f; m[1][1] *= f; m[1][2] *= f;
m[2][0] *= f; m[2][1] *= f; m[2][2] *= f;
}
/* ----------------------------------------------------------------------
multiply 2 shape matrices
upper-triangular 3x3, stored as 6-vector in Voigt notation
------------------------------------------------------------------------- */
void MathExtra::multiply_shape_shape(const double *one, const double *two,
double *ans)
{
ans[0] = one[0]*two[0];
ans[1] = one[1]*two[1];
ans[2] = one[2]*two[2];
ans[3] = one[1]*two[3] + one[3]*two[2];
ans[4] = one[0]*two[4] + one[5]*two[3] + one[4]*two[2];
ans[5] = one[0]*two[5] + one[5]*two[1];
}
/* ----------------------------------------------------------------------
normalize a quaternion
------------------------------------------------------------------------- */
void MathExtra::qnormalize(double *q)
{
double norm = 1.0 / sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
q[0] *= norm;
q[1] *= norm;
q[2] *= norm;
q[3] *= norm;
}
/* ----------------------------------------------------------------------
conjugate of a quaternion: qc = conjugate of q
assume q is of unit length
------------------------------------------------------------------------- */
void MathExtra::qconjugate(double *q, double *qc)
{
qc[0] = q[0];
qc[1] = -q[1];
qc[2] = -q[2];
qc[3] = -q[3];
}
/* ----------------------------------------------------------------------
vector-quaternion multiply: c = a*b, where a = (0,a)
------------------------------------------------------------------------- */
void MathExtra::vecquat(double *a, double *b, double *c)
{
c[0] = -a[0]*b[1] - a[1]*b[2] - a[2]*b[3];
c[1] = b[0]*a[0] + a[1]*b[3] - a[2]*b[2];
c[2] = b[0]*a[1] + a[2]*b[1] - a[0]*b[3];
c[3] = b[0]*a[2] + a[0]*b[2] - a[1]*b[1];
}
/* ----------------------------------------------------------------------
quaternion-vector multiply: c = a*b, where b = (0,b)
------------------------------------------------------------------------- */
void MathExtra::quatvec(double *a, double *b, double *c)
{
c[0] = -a[1]*b[0] - a[2]*b[1] - a[3]*b[2];
c[1] = a[0]*b[0] + a[2]*b[2] - a[3]*b[1];
c[2] = a[0]*b[1] + a[3]*b[0] - a[1]*b[2];
c[3] = a[0]*b[2] + a[1]*b[1] - a[2]*b[0];
}
/* ----------------------------------------------------------------------
quaternion-quaternion multiply: c = a*b
------------------------------------------------------------------------- */
void MathExtra::quatquat(double *a, double *b, double *c)
{
c[0] = a[0]*b[0] - a[1]*b[1] - a[2]*b[2] - a[3]*b[3];
c[1] = a[0]*b[1] + b[0]*a[1] + a[2]*b[3] - a[3]*b[2];
c[2] = a[0]*b[2] + b[0]*a[2] + a[3]*b[1] - a[1]*b[3];
c[3] = a[0]*b[3] + b[0]*a[3] + a[1]*b[2] - a[2]*b[1];
}
/* ----------------------------------------------------------------------
quaternion multiply: c = inv(a)*b
a is a quaternion
b is a four component vector
c is a three component vector
------------------------------------------------------------------------- */
void MathExtra::invquatvec(double *a, double *b, double *c)
{
c[0] = -a[1]*b[0] + a[0]*b[1] + a[3]*b[2] - a[2]*b[3];
c[1] = -a[2]*b[0] - a[3]*b[1] + a[0]*b[2] + a[1]*b[3];
c[2] = -a[3]*b[0] + a[2]*b[1] - a[1]*b[2] + a[0]*b[3];
}
/* ----------------------------------------------------------------------
compute quaternion from axis-angle rotation
v MUST be a unit vector
------------------------------------------------------------------------- */
void MathExtra::axisangle_to_quat(const double *v, const double angle,
double *quat)
{
double halfa = 0.5*angle;
double sina = sin(halfa);
quat[0] = cos(halfa);
quat[1] = v[0]*sina;
quat[2] = v[1]*sina;
quat[3] = v[2]*sina;
}
/* ----------------------------------------------------------------------
Apply principal rotation generator about x to rotation matrix m
------------------------------------------------------------------------- */
void MathExtra::rotation_generator_x(const double m[3][3], double ans[3][3])
{
ans[0][0] = 0;
ans[0][1] = -m[0][2];
ans[0][2] = m[0][1];
ans[1][0] = 0;
ans[1][1] = -m[1][2];
ans[1][2] = m[1][1];
ans[2][0] = 0;
ans[2][1] = -m[2][2];
ans[2][2] = m[2][1];
}
/* ----------------------------------------------------------------------
Apply principal rotation generator about y to rotation matrix m
------------------------------------------------------------------------- */
void MathExtra::rotation_generator_y(const double m[3][3], double ans[3][3])
{
ans[0][0] = m[0][2];
ans[0][1] = 0;
ans[0][2] = -m[0][0];
ans[1][0] = m[1][2];
ans[1][1] = 0;
ans[1][2] = -m[1][0];
ans[2][0] = m[2][2];
ans[2][1] = 0;
ans[2][2] = -m[2][0];
}
/* ----------------------------------------------------------------------
Apply principal rotation generator about z to rotation matrix m
------------------------------------------------------------------------- */
void MathExtra::rotation_generator_z(const double m[3][3], double ans[3][3])
{
ans[0][0] = -m[0][1];
ans[0][1] = m[0][0];
ans[0][2] = 0;
ans[1][0] = -m[1][1];
ans[1][1] = m[1][0];
ans[1][2] = 0;
ans[2][0] = -m[2][1];
ans[2][1] = m[2][0];
ans[2][2] = 0;
}
#endif
|