This file is indexed.

/usr/lib/hugs/packages/fgl/Data/Graph/Inductive/Internal/FiniteMap.hs is in libhugs-fgl-bundled 98.200609.21-5.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
-- | Simple Finite Maps.
-- This implementation provides several useful methods that Data.FiniteMap
-- does not.

module Data.Graph.Inductive.Internal.FiniteMap(
    -- * Type
    FiniteMap(..),
    -- * Operations
    emptyFM,addToFM,delFromFM,
    updFM,
    accumFM,
    splitFM,
    isEmptyFM,sizeFM,lookupFM,elemFM,
    rangeFM,
    minFM,maxFM,predFM,succFM,
    splitMinFM,
    fmToList
) where

import Data.Maybe (isJust)              

data Ord a => FiniteMap a b =
    Empty | Node Int (FiniteMap a b) (a,b) (FiniteMap a b)
    deriving (Eq)


----------------------------------------------------------------------
-- UTILITIES
----------------------------------------------------------------------


-- pretty printing
--
showsMap :: (Show a,Show b,Ord a) => FiniteMap a b -> ShowS
showsMap Empty            = id
showsMap (Node _ l (i,x) r) = showsMap l . (' ':) . 
                              shows i . ("->"++) . shows x . showsMap r
                
instance (Show a,Show b,Ord a) => Show (FiniteMap a b) where
  showsPrec _ m = showsMap m


-- other
--
splitMax :: Ord a => FiniteMap a b -> (FiniteMap a b,(a,b))
splitMax (Node _ l x Empty) = (l,x)
splitMax (Node _ l x r)     = (avlBalance l x m,y) where (m,y) = splitMax r
splitMax Empty		    = error "splitMax on empty FiniteMap"

merge :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b
merge l Empty = l
merge Empty r = r
merge l r     = avlBalance l' x r where (l',x) = splitMax l


----------------------------------------------------------------------
-- MAIN FUNCTIONS
----------------------------------------------------------------------

emptyFM :: Ord a => FiniteMap a b
emptyFM  = Empty

addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b
addToFM Empty            i x              =  node Empty (i,x) Empty
addToFM (Node h l (j,y) r) i x
    | i<j        =  avlBalance (addToFM l i x) (j,y) r
    | i>j        =  avlBalance l (j,y) (addToFM r i x) 
    | otherwise  =  Node h l (j,x) r  

-- | applies function to stored entry
updFM :: Ord a => FiniteMap a b -> a -> (b -> b) -> FiniteMap a b
updFM Empty              _ _              =  Empty
updFM (Node h l (j,x) r) i f 
           | i<j        =  let l' = updFM l i f in l' `seq` Node h l' (j,x) r
           | i>j        =  let r' = updFM r i f in r' `seq` Node h l (j,x) r'
           | otherwise  =  Node h l (j,f x) r  

-- | defines or aggregates entries
accumFM :: Ord a => FiniteMap a b -> a -> (b -> b -> b) -> b -> FiniteMap a b
accumFM Empty              i _ x              =  node Empty (i,x) Empty
accumFM (Node h l (j,y) r) i f x 
    | i<j        =  avlBalance (accumFM l i f x) (j,y) r
    | i>j        =  avlBalance l (j,y) (accumFM r i f x) 
    | otherwise  =  Node h l (j,f x y) r  

delFromFM :: Ord a => FiniteMap a b -> a -> FiniteMap a b
delFromFM Empty              _              =  Empty
delFromFM (Node _ l (j,x) r) i
    | i<j        =  avlBalance (delFromFM l i) (j,x) r
    | i>j        =  avlBalance l (j,x) (delFromFM r i) 
    | otherwise  =  merge l r  

isEmptyFM :: FiniteMap a b -> Bool
isEmptyFM Empty = True
isEmptyFM _     = False

sizeFM :: Ord a => FiniteMap a b -> Int
sizeFM Empty          = 0
sizeFM (Node _ l _ r) = sizeFM l + 1 + sizeFM r

lookupFM :: Ord a => FiniteMap a b -> a -> Maybe b
lookupFM Empty _ = Nothing
lookupFM (Node _ l (j,x) r) i | i<j        =  lookupFM l i
                              | i>j        =  lookupFM r i 
                              | otherwise  =  Just x

-- | applies lookup to an interval
rangeFM :: Ord a => FiniteMap a b -> a -> a -> [b]
rangeFM m i j = rangeFMa m i j []
--
rangeFMa Empty _ _ a = a
rangeFMa (Node _ l (k,x) r) i j a
    | k<i       = rangeFMa r i j a
    | k>j       = rangeFMa l i j a
    | otherwise = rangeFMa l i j (x:rangeFMa r i j a)

minFM :: Ord a => FiniteMap a b -> Maybe (a,b)
minFM Empty              = Nothing
minFM (Node _ Empty x _) = Just x
minFM (Node _ l     _ _) = minFM l

maxFM :: Ord a => FiniteMap a b -> Maybe (a,b)
maxFM Empty              = Nothing
maxFM (Node _ _ x Empty) = Just x
maxFM (Node _ _ _ r)     = maxFM r

predFM :: Ord a => FiniteMap a b -> a -> Maybe (a,b)
predFM m i = predFM' m i Nothing
--
predFM' Empty              _ p              =  p
predFM' (Node _ l (j,x) r) i p | i<j        =  predFM' l i p
                               | i>j        =  predFM' r i (Just (j,x))
                               | isJust ml  =  ml 
                               | otherwise  =  p
                                 where ml = maxFM l
                           
succFM :: Ord a => FiniteMap a b -> a -> Maybe (a,b)
succFM m i = succFM' m i Nothing
--
succFM' Empty              _ p              =  p
succFM' (Node _ l (j,x) r) i p | i<j        =  succFM' l i (Just (j,x))
                               | i>j        =  succFM' r i p
                               | isJust mr  =  mr 
                               | otherwise  =  p
                                 where mr = minFM r

elemFM :: Ord a => FiniteMap a b -> a -> Bool
elemFM m i = case lookupFM m i of {Nothing -> False; _ -> True}

-- | combines delFrom and lookup
splitFM :: Ord a => FiniteMap a b -> a -> Maybe (FiniteMap a b,(a,b))
splitFM Empty              _ =  Nothing
splitFM (Node _ l (j,x) r) i =
        if i<j then
           case splitFM l i of
                Just (l',y) -> Just (avlBalance l' (j,x) r,y)
                Nothing     -> Nothing  else
        if i>j then
           case splitFM r i of
                Just (r',y) -> Just (avlBalance l (j,x) r',y) 
                Nothing     -> Nothing  
        else {- i==j -}        Just (merge l r,(j,x))  

-- | combines splitFM and minFM
splitMinFM :: Ord a => FiniteMap a b -> Maybe (FiniteMap a b,(a,b))
splitMinFM Empty              =  Nothing
splitMinFM (Node _ Empty x r) = Just (r,x)
splitMinFM (Node _ l x r)     = Just (avlBalance l' x r,y) 
                                where Just (l',y) = splitMinFM l

fmToList :: Ord a => FiniteMap a b -> [(a,b)]
fmToList m = scan m []
             where scan Empty xs = xs
                   scan (Node _ l x r) xs = scan l (x:(scan r xs))

----------------------------------------------------------------------
-- AVL tree helper functions
----------------------------------------------------------------------

height :: Ord a => FiniteMap a b -> Int
height Empty          = 0
height (Node h _ _ _) = h

node :: Ord a => FiniteMap a b -> (a,b) -> FiniteMap a b -> FiniteMap a b
node l val r = Node h l val r
    where h=1+(height l `max` height r)

avlBalance :: Ord a => FiniteMap a b -> (a,b) -> FiniteMap a b -> FiniteMap a b
avlBalance l (i,x) r
    | (hr + 1 < hl) && (bias l < 0) = rotr (node (rotl l) (i,x) r)
    | (hr + 1 < hl)                 = rotr (node l (i,x) r)
    | (hl + 1 < hr) && (0 < bias r) = rotl (node l (i,x) (rotr r))
    | (hl + 1 < hr)                 = rotl (node l (i,x) r)
    | otherwise                     = node l (i,x) r
    where hl=height l; hr=height r

bias :: Ord a => FiniteMap a b -> Int
bias (Node _ l _ r) = height l - height r
bias Empty	    = 0

rotr :: Ord a => FiniteMap a b -> FiniteMap a b
rotr Empty			      = Empty
rotr (Node _ (Node _ l1 v1 r1) v2 r2) = node l1 v1 (node r1 v2 r2)
rotr (Node _ Empty _ _)		      = error "rotr on invalid FiniteMap"

rotl :: Ord a => FiniteMap a b -> FiniteMap a b
rotl Empty			      = Empty
rotl (Node _ l1 v1 (Node _ l2 v2 r2)) = node (node l1 v1 l2) v2 r2
rotl (Node _ _ _ Empty)		      = error "rotl on invalid FiniteMap"