This file is indexed.

/usr/lib/hugs/packages/base/Data/Set.hs is in libhugs-base-bundled 98.200609.21-5.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Set
-- Copyright   :  (c) Daan Leijen 2002
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- An efficient implementation of sets.
--
-- Since many function names (but not the type name) clash with
-- "Prelude" names, this module is usually imported @qualified@, e.g.
--
-- >  import Data.Set (Set)
-- >  import qualified Data.Set as Set
--
-- The implementation of 'Set' is based on /size balanced/ binary trees (or
-- trees of /bounded balance/) as described by:
--
--    * Stephen Adams, \"/Efficient sets: a balancing act/\",
--	Journal of Functional Programming 3(4):553-562, October 1993,
--	<http://www.swiss.ai.mit.edu/~adams/BB>.
--
--    * J. Nievergelt and E.M. Reingold,
--	\"/Binary search trees of bounded balance/\",
--	SIAM journal of computing 2(1), March 1973.
--
-- Note that the implementation is /left-biased/ -- the elements of a
-- first argument are always preferred to the second, for example in
-- 'union' or 'insert'.  Of course, left-biasing can only be observed
-- when equality is an equivalence relation instead of structural
-- equality.
-----------------------------------------------------------------------------

module Data.Set  ( 
            -- * Set type
              Set          -- instance Eq,Ord,Show,Read,Data,Typeable

            -- * Operators
            , (\\)

            -- * Query
            , null
            , size
            , member
            , notMember
            , isSubsetOf
            , isProperSubsetOf
            
            -- * Construction
            , empty
            , singleton
            , insert
            , delete
            
            -- * Combine
            , union, unions
            , difference
            , intersection
            
            -- * Filter
            , filter
            , partition
            , split
            , splitMember

            -- * Map
	    , map
	    , mapMonotonic

            -- * Fold
            , fold

            -- * Min\/Max
            , findMin
            , findMax
            , deleteMin
            , deleteMax
            , deleteFindMin
            , deleteFindMax
            , maxView
            , minView

            -- * Conversion

            -- ** List
            , elems
            , toList
            , fromList
            
            -- ** Ordered list
            , toAscList
            , fromAscList
            , fromDistinctAscList
                        
            -- * Debugging
            , showTree
            , showTreeWith
            , valid
            ) where

import Prelude hiding (filter,foldr,null,map)
import qualified Data.List as List
import Data.Monoid (Monoid(..))
import Data.Typeable
import Data.Foldable (Foldable(foldMap))

{-
-- just for testing
import QuickCheck 
import List (nub,sort)
import qualified List
-}







{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}
infixl 9 \\ --

-- | /O(n+m)/. See 'difference'.
(\\) :: Ord a => Set a -> Set a -> Set a
m1 \\ m2 = difference m1 m2

{--------------------------------------------------------------------
  Sets are size balanced trees
--------------------------------------------------------------------}
-- | A set of values @a@.
data Set a    = Tip 
              | Bin {-# UNPACK #-} !Size a !(Set a) !(Set a) 

type Size     = Int

instance Ord a => Monoid (Set a) where
    mempty  = empty
    mappend = union
    mconcat = unions

instance Foldable Set where
    foldMap f Tip = mempty
    foldMap f (Bin _s k l r) = foldMap f l `mappend` f k `mappend` foldMap f r



















{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}
-- | /O(1)/. Is this the empty set?
null :: Set a -> Bool
null t
  = case t of
      Tip           -> True
      Bin sz x l r  -> False

-- | /O(1)/. The number of elements in the set.
size :: Set a -> Int
size t
  = case t of
      Tip           -> 0
      Bin sz x l r  -> sz

-- | /O(log n)/. Is the element in the set?
member :: Ord a => a -> Set a -> Bool
member x t
  = case t of
      Tip -> False
      Bin sz y l r
          -> case compare x y of
               LT -> member x l
               GT -> member x r
               EQ -> True       

-- | /O(log n)/. Is the element not in the set?
notMember :: Ord a => a -> Set a -> Bool
notMember x t = not $ member x t

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty set.
empty  :: Set a
empty
  = Tip

-- | /O(1)/. Create a singleton set.
singleton :: a -> Set a
singleton x 
  = Bin 1 x Tip Tip

{--------------------------------------------------------------------
  Insertion, Deletion
--------------------------------------------------------------------}
-- | /O(log n)/. Insert an element in a set.
-- If the set already contains an element equal to the given value,
-- it is replaced with the new value.
insert :: Ord a => a -> Set a -> Set a
insert x t
  = case t of
      Tip -> singleton x
      Bin sz y l r
          -> case compare x y of
               LT -> balance y (insert x l) r
               GT -> balance y l (insert x r)
               EQ -> Bin sz x l r


-- | /O(log n)/. Delete an element from a set.
delete :: Ord a => a -> Set a -> Set a
delete x t
  = case t of
      Tip -> Tip
      Bin sz y l r 
          -> case compare x y of
               LT -> balance y (delete x l) r
               GT -> balance y l (delete x r)
               EQ -> glue l r

{--------------------------------------------------------------------
  Subset
--------------------------------------------------------------------}
-- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal).
isProperSubsetOf :: Ord a => Set a -> Set a -> Bool
isProperSubsetOf s1 s2
    = (size s1 < size s2) && (isSubsetOf s1 s2)


-- | /O(n+m)/. Is this a subset?
-- @(s1 `isSubsetOf` s2)@ tells whether @s1@ is a subset of @s2@.
isSubsetOf :: Ord a => Set a -> Set a -> Bool
isSubsetOf t1 t2
  = (size t1 <= size t2) && (isSubsetOfX t1 t2)

isSubsetOfX Tip t = True
isSubsetOfX t Tip = False
isSubsetOfX (Bin _ x l r) t
  = found && isSubsetOfX l lt && isSubsetOfX r gt
  where
    (lt,found,gt) = splitMember x t


{--------------------------------------------------------------------
  Minimal, Maximal
--------------------------------------------------------------------}
-- | /O(log n)/. The minimal element of a set.
findMin :: Set a -> a
findMin (Bin _ x Tip r) = x
findMin (Bin _ x l r)   = findMin l
findMin Tip             = error "Set.findMin: empty set has no minimal element"

-- | /O(log n)/. The maximal element of a set.
findMax :: Set a -> a
findMax (Bin _ x l Tip)  = x
findMax (Bin _ x l r)    = findMax r
findMax Tip              = error "Set.findMax: empty set has no maximal element"

-- | /O(log n)/. Delete the minimal element.
deleteMin :: Set a -> Set a
deleteMin (Bin _ x Tip r) = r
deleteMin (Bin _ x l r)   = balance x (deleteMin l) r
deleteMin Tip             = Tip

-- | /O(log n)/. Delete the maximal element.
deleteMax :: Set a -> Set a
deleteMax (Bin _ x l Tip) = l
deleteMax (Bin _ x l r)   = balance x l (deleteMax r)
deleteMax Tip             = Tip


{--------------------------------------------------------------------
  Union. 
--------------------------------------------------------------------}
-- | The union of a list of sets: (@'unions' == 'foldl' 'union' 'empty'@).
unions :: Ord a => [Set a] -> Set a
unions ts
  = foldlStrict union empty ts


-- | /O(n+m)/. The union of two sets, preferring the first set when
-- equal elements are encountered.
-- The implementation uses the efficient /hedge-union/ algorithm.
-- Hedge-union is more efficient on (bigset `union` smallset).
union :: Ord a => Set a -> Set a -> Set a
union Tip t2  = t2
union t1 Tip  = t1
union t1 t2 = hedgeUnion (const LT) (const GT) t1 t2

hedgeUnion cmplo cmphi t1 Tip 
  = t1
hedgeUnion cmplo cmphi Tip (Bin _ x l r)
  = join x (filterGt cmplo l) (filterLt cmphi r)
hedgeUnion cmplo cmphi (Bin _ x l r) t2
  = join x (hedgeUnion cmplo cmpx l (trim cmplo cmpx t2)) 
           (hedgeUnion cmpx cmphi r (trim cmpx cmphi t2))
  where
    cmpx y  = compare x y

{--------------------------------------------------------------------
  Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference of two sets. 
-- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/.
difference :: Ord a => Set a -> Set a -> Set a
difference Tip t2  = Tip
difference t1 Tip  = t1
difference t1 t2   = hedgeDiff (const LT) (const GT) t1 t2

hedgeDiff cmplo cmphi Tip t     
  = Tip
hedgeDiff cmplo cmphi (Bin _ x l r) Tip 
  = join x (filterGt cmplo l) (filterLt cmphi r)
hedgeDiff cmplo cmphi t (Bin _ x l r) 
  = merge (hedgeDiff cmplo cmpx (trim cmplo cmpx t) l) 
          (hedgeDiff cmpx cmphi (trim cmpx cmphi t) r)
  where
    cmpx y = compare x y

{--------------------------------------------------------------------
  Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. The intersection of two sets.
-- Elements of the result come from the first set.
intersection :: Ord a => Set a -> Set a -> Set a
intersection Tip t = Tip
intersection t Tip = Tip
intersection t1@(Bin s1 x1 l1 r1) t2@(Bin s2 x2 l2 r2) =
   if s1 >= s2 then
      let (lt,found,gt) = splitLookup x2 t1
          tl            = intersection lt l2
          tr            = intersection gt r2
      in case found of
      Just x -> join x tl tr
      Nothing -> merge tl tr
   else let (lt,found,gt) = splitMember x1 t2
            tl            = intersection l1 lt
            tr            = intersection r1 gt
        in if found then join x1 tl tr
           else merge tl tr

{--------------------------------------------------------------------
  Filter and partition
--------------------------------------------------------------------}
-- | /O(n)/. Filter all elements that satisfy the predicate.
filter :: Ord a => (a -> Bool) -> Set a -> Set a
filter p Tip = Tip
filter p (Bin _ x l r)
  | p x       = join x (filter p l) (filter p r)
  | otherwise = merge (filter p l) (filter p r)

-- | /O(n)/. Partition the set into two sets, one with all elements that satisfy
-- the predicate and one with all elements that don't satisfy the predicate.
-- See also 'split'.
partition :: Ord a => (a -> Bool) -> Set a -> (Set a,Set a)
partition p Tip = (Tip,Tip)
partition p (Bin _ x l r)
  | p x       = (join x l1 r1,merge l2 r2)
  | otherwise = (merge l1 r1,join x l2 r2)
  where
    (l1,l2) = partition p l
    (r1,r2) = partition p r

{----------------------------------------------------------------------
  Map
----------------------------------------------------------------------}

-- | /O(n*log n)/. 
-- @'map' f s@ is the set obtained by applying @f@ to each element of @s@.
-- 
-- It's worth noting that the size of the result may be smaller if,
-- for some @(x,y)@, @x \/= y && f x == f y@

map :: (Ord a, Ord b) => (a->b) -> Set a -> Set b
map f = fromList . List.map f . toList

-- | /O(n)/. The 
--
-- @'mapMonotonic' f s == 'map' f s@, but works only when @f@ is monotonic.
-- /The precondition is not checked./
-- Semi-formally, we have:
-- 
-- > and [x < y ==> f x < f y | x <- ls, y <- ls] 
-- >                     ==> mapMonotonic f s == map f s
-- >     where ls = toList s

mapMonotonic :: (a->b) -> Set a -> Set b
mapMonotonic f Tip = Tip
mapMonotonic f (Bin sz x l r) =
    Bin sz (f x) (mapMonotonic f l) (mapMonotonic f r)


{--------------------------------------------------------------------
  Fold
--------------------------------------------------------------------}
-- | /O(n)/. Fold over the elements of a set in an unspecified order.
fold :: (a -> b -> b) -> b -> Set a -> b
fold f z s
  = foldr f z s

-- | /O(n)/. Post-order fold.
foldr :: (a -> b -> b) -> b -> Set a -> b
foldr f z Tip           = z
foldr f z (Bin _ x l r) = foldr f (f x (foldr f z r)) l

{--------------------------------------------------------------------
  List variations 
--------------------------------------------------------------------}
-- | /O(n)/. The elements of a set.
elems :: Set a -> [a]
elems s
  = toList s

{--------------------------------------------------------------------
  Lists 
--------------------------------------------------------------------}
-- | /O(n)/. Convert the set to a list of elements.
toList :: Set a -> [a]
toList s
  = toAscList s

-- | /O(n)/. Convert the set to an ascending list of elements.
toAscList :: Set a -> [a]
toAscList t   
  = foldr (:) [] t


-- | /O(n*log n)/. Create a set from a list of elements.
fromList :: Ord a => [a] -> Set a 
fromList xs 
  = foldlStrict ins empty xs
  where
    ins t x = insert x t

{--------------------------------------------------------------------
  Building trees from ascending/descending lists can be done in linear time.
  
  Note that if [xs] is ascending that: 
    fromAscList xs == fromList xs
--------------------------------------------------------------------}
-- | /O(n)/. Build a set from an ascending list in linear time.
-- /The precondition (input list is ascending) is not checked./
fromAscList :: Eq a => [a] -> Set a 
fromAscList xs
  = fromDistinctAscList (combineEq xs)
  where
  -- [combineEq xs] combines equal elements with [const] in an ordered list [xs]
  combineEq xs
    = case xs of
        []     -> []
        [x]    -> [x]
        (x:xx) -> combineEq' x xx

  combineEq' z [] = [z]
  combineEq' z (x:xs)
    | z==x      = combineEq' z xs
    | otherwise = z:combineEq' x xs


-- | /O(n)/. Build a set from an ascending list of distinct elements in linear time.
-- /The precondition (input list is strictly ascending) is not checked./
fromDistinctAscList :: [a] -> Set a 
fromDistinctAscList xs
  = build const (length xs) xs
  where
    -- 1) use continutations so that we use heap space instead of stack space.
    -- 2) special case for n==5 to build bushier trees. 
    build c 0 xs   = c Tip xs 
    build c 5 xs   = case xs of
                       (x1:x2:x3:x4:x5:xx) 
                            -> c (bin x4 (bin x2 (singleton x1) (singleton x3)) (singleton x5)) xx
    build c n xs   = seq nr $ build (buildR nr c) nl xs
                   where
                     nl = n `div` 2
                     nr = n - nl - 1

    buildR n c l (x:ys) = build (buildB l x c) n ys
    buildB l x c r zs   = c (bin x l r) zs

{--------------------------------------------------------------------
  Eq converts the set to a list. In a lazy setting, this 
  actually seems one of the faster methods to compare two trees 
  and it is certainly the simplest :-)
--------------------------------------------------------------------}
instance Eq a => Eq (Set a) where
  t1 == t2  = (size t1 == size t2) && (toAscList t1 == toAscList t2)

{--------------------------------------------------------------------
  Ord 
--------------------------------------------------------------------}

instance Ord a => Ord (Set a) where
    compare s1 s2 = compare (toAscList s1) (toAscList s2) 

{--------------------------------------------------------------------
  Show
--------------------------------------------------------------------}
instance Show a => Show (Set a) where
  showsPrec p xs = showParen (p > 10) $
    showString "fromList " . shows (toList xs)

showSet :: (Show a) => [a] -> ShowS
showSet []     
  = showString "{}" 
showSet (x:xs) 
  = showChar '{' . shows x . showTail xs
  where
    showTail []     = showChar '}'
    showTail (x:xs) = showChar ',' . shows x . showTail xs

{--------------------------------------------------------------------
  Read
--------------------------------------------------------------------}
instance (Read a, Ord a) => Read (Set a) where








  readsPrec p = readParen (p > 10) $ \ r -> do
    ("fromList",s) <- lex r
    (xs,t) <- reads s
    return (fromList xs,t)


{--------------------------------------------------------------------
  Typeable/Data
--------------------------------------------------------------------}

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      























































setTc = mkTyCon "Set"; instance Typeable1 Set where { typeOf1 _ = mkTyConApp setTc [] }; instance Typeable a => Typeable (Set a) where { typeOf = typeOfDefault }

{--------------------------------------------------------------------
  Utility functions that return sub-ranges of the original
  tree. Some functions take a comparison function as argument to
  allow comparisons against infinite values. A function [cmplo x]
  should be read as [compare lo x].

  [trim cmplo cmphi t]  A tree that is either empty or where [cmplo x == LT]
                        and [cmphi x == GT] for the value [x] of the root.
  [filterGt cmp t]      A tree where for all values [k]. [cmp k == LT]
  [filterLt cmp t]      A tree where for all values [k]. [cmp k == GT]

  [split k t]           Returns two trees [l] and [r] where all values
                        in [l] are <[k] and all keys in [r] are >[k].
  [splitMember k t]     Just like [split] but also returns whether [k]
                        was found in the tree.
--------------------------------------------------------------------}

{--------------------------------------------------------------------
  [trim lo hi t] trims away all subtrees that surely contain no
  values between the range [lo] to [hi]. The returned tree is either
  empty or the key of the root is between @lo@ and @hi@.
--------------------------------------------------------------------}
trim :: (a -> Ordering) -> (a -> Ordering) -> Set a -> Set a
trim cmplo cmphi Tip = Tip
trim cmplo cmphi t@(Bin sx x l r)
  = case cmplo x of
      LT -> case cmphi x of
              GT -> t
              le -> trim cmplo cmphi l
      ge -> trim cmplo cmphi r
              
trimMemberLo :: Ord a => a -> (a -> Ordering) -> Set a -> (Bool, Set a)
trimMemberLo lo cmphi Tip = (False,Tip)
trimMemberLo lo cmphi t@(Bin sx x l r)
  = case compare lo x of
      LT -> case cmphi x of
              GT -> (member lo t, t)
              le -> trimMemberLo lo cmphi l
      GT -> trimMemberLo lo cmphi r
      EQ -> (True,trim (compare lo) cmphi r)


{--------------------------------------------------------------------
  [filterGt x t] filter all values >[x] from tree [t]
  [filterLt x t] filter all values <[x] from tree [t]
--------------------------------------------------------------------}
filterGt :: (a -> Ordering) -> Set a -> Set a
filterGt cmp Tip = Tip
filterGt cmp (Bin sx x l r)
  = case cmp x of
      LT -> join x (filterGt cmp l) r
      GT -> filterGt cmp r
      EQ -> r
      
filterLt :: (a -> Ordering) -> Set a -> Set a
filterLt cmp Tip = Tip
filterLt cmp (Bin sx x l r)
  = case cmp x of
      LT -> filterLt cmp l
      GT -> join x l (filterLt cmp r)
      EQ -> l


{--------------------------------------------------------------------
  Split
--------------------------------------------------------------------}
-- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@
-- where all elements in @set1@ are lower than @x@ and all elements in
-- @set2@ larger than @x@. @x@ is not found in neither @set1@ nor @set2@.
split :: Ord a => a -> Set a -> (Set a,Set a)
split x Tip = (Tip,Tip)
split x (Bin sy y l r)
  = case compare x y of
      LT -> let (lt,gt) = split x l in (lt,join y gt r)
      GT -> let (lt,gt) = split x r in (join y l lt,gt)
      EQ -> (l,r)

-- | /O(log n)/. Performs a 'split' but also returns whether the pivot
-- element was found in the original set.
splitMember :: Ord a => a -> Set a -> (Set a,Bool,Set a)
splitMember x t = let (l,m,r) = splitLookup x t in
     (l,maybe False (const True) m,r)

-- | /O(log n)/. Performs a 'split' but also returns the pivot
-- element that was found in the original set.
splitLookup :: Ord a => a -> Set a -> (Set a,Maybe a,Set a)
splitLookup x Tip = (Tip,Nothing,Tip)
splitLookup x (Bin sy y l r)
   = case compare x y of
       LT -> let (lt,found,gt) = splitLookup x l in (lt,found,join y gt r)
       GT -> let (lt,found,gt) = splitLookup x r in (join y l lt,found,gt)
       EQ -> (l,Just y,r)

{--------------------------------------------------------------------
  Utility functions that maintain the balance properties of the tree.
  All constructors assume that all values in [l] < [x] and all values
  in [r] > [x], and that [l] and [r] are valid trees.
  
  In order of sophistication:
    [Bin sz x l r]    The type constructor.
    [bin x l r]       Maintains the correct size, assumes that both [l]
                      and [r] are balanced with respect to each other.
    [balance x l r]   Restores the balance and size.
                      Assumes that the original tree was balanced and
                      that [l] or [r] has changed by at most one element.
    [join x l r]      Restores balance and size. 

  Furthermore, we can construct a new tree from two trees. Both operations
  assume that all values in [l] < all values in [r] and that [l] and [r]
  are valid:
    [glue l r]        Glues [l] and [r] together. Assumes that [l] and
                      [r] are already balanced with respect to each other.
    [merge l r]       Merges two trees and restores balance.

  Note: in contrast to Adam's paper, we use (<=) comparisons instead
  of (<) comparisons in [join], [merge] and [balance]. 
  Quickcheck (on [difference]) showed that this was necessary in order 
  to maintain the invariants. It is quite unsatisfactory that I haven't 
  been able to find out why this is actually the case! Fortunately, it 
  doesn't hurt to be a bit more conservative.
--------------------------------------------------------------------}

{--------------------------------------------------------------------
  Join 
--------------------------------------------------------------------}
join :: a -> Set a -> Set a -> Set a
join x Tip r  = insertMin x r
join x l Tip  = insertMax x l
join x l@(Bin sizeL y ly ry) r@(Bin sizeR z lz rz)
  | delta*sizeL <= sizeR  = balance z (join x l lz) rz
  | delta*sizeR <= sizeL  = balance y ly (join x ry r)
  | otherwise             = bin x l r


-- insertMin and insertMax don't perform potentially expensive comparisons.
insertMax,insertMin :: a -> Set a -> Set a 
insertMax x t
  = case t of
      Tip -> singleton x
      Bin sz y l r
          -> balance y l (insertMax x r)
             
insertMin x t
  = case t of
      Tip -> singleton x
      Bin sz y l r
          -> balance y (insertMin x l) r
             
{--------------------------------------------------------------------
  [merge l r]: merges two trees.
--------------------------------------------------------------------}
merge :: Set a -> Set a -> Set a
merge Tip r   = r
merge l Tip   = l
merge l@(Bin sizeL x lx rx) r@(Bin sizeR y ly ry)
  | delta*sizeL <= sizeR = balance y (merge l ly) ry
  | delta*sizeR <= sizeL = balance x lx (merge rx r)
  | otherwise            = glue l r

{--------------------------------------------------------------------
  [glue l r]: glues two trees together.
  Assumes that [l] and [r] are already balanced with respect to each other.
--------------------------------------------------------------------}
glue :: Set a -> Set a -> Set a
glue Tip r = r
glue l Tip = l
glue l r   
  | size l > size r = let (m,l') = deleteFindMax l in balance m l' r
  | otherwise       = let (m,r') = deleteFindMin r in balance m l r'


-- | /O(log n)/. Delete and find the minimal element.
-- 
-- > deleteFindMin set = (findMin set, deleteMin set)

deleteFindMin :: Set a -> (a,Set a)
deleteFindMin t 
  = case t of
      Bin _ x Tip r -> (x,r)
      Bin _ x l r   -> let (xm,l') = deleteFindMin l in (xm,balance x l' r)
      Tip           -> (error "Set.deleteFindMin: can not return the minimal element of an empty set", Tip)

-- | /O(log n)/. Delete and find the maximal element.
-- 
-- > deleteFindMax set = (findMax set, deleteMax set)
deleteFindMax :: Set a -> (a,Set a)
deleteFindMax t
  = case t of
      Bin _ x l Tip -> (x,l)
      Bin _ x l r   -> let (xm,r') = deleteFindMax r in (xm,balance x l r')
      Tip           -> (error "Set.deleteFindMax: can not return the maximal element of an empty set", Tip)

-- | /O(log n)/. Retrieves the minimal key of the set, and the set stripped from that element
-- @fail@s (in the monad) when passed an empty set.
minView :: Monad m => Set a -> m (Set a, a)
minView Tip = fail "Set.minView: empty set"
minView x = return (swap $ deleteFindMin x)

-- | /O(log n)/. Retrieves the maximal key of the set, and the set stripped from that element
-- @fail@s (in the monad) when passed an empty set.
maxView :: Monad m => Set a -> m (Set a, a)
maxView Tip = fail "Set.maxView: empty set"
maxView x = return (swap $ deleteFindMax x)

swap (a,b) = (b,a)



{--------------------------------------------------------------------
  [balance x l r] balances two trees with value x.
  The sizes of the trees should balance after decreasing the
  size of one of them. (a rotation).

  [delta] is the maximal relative difference between the sizes of
          two trees, it corresponds with the [w] in Adams' paper,
          or equivalently, [1/delta] corresponds with the $\alpha$
          in Nievergelt's paper. Adams shows that [delta] should
          be larger than 3.745 in order to garantee that the
          rotations can always restore balance.         

  [ratio] is the ratio between an outer and inner sibling of the
          heavier subtree in an unbalanced setting. It determines
          whether a double or single rotation should be performed
          to restore balance. It is correspondes with the inverse
          of $\alpha$ in Adam's article.

  Note that:
  - [delta] should be larger than 4.646 with a [ratio] of 2.
  - [delta] should be larger than 3.745 with a [ratio] of 1.534.
  
  - A lower [delta] leads to a more 'perfectly' balanced tree.
  - A higher [delta] performs less rebalancing.

  - Balancing is automatic for random data and a balancing
    scheme is only necessary to avoid pathological worst cases.
    Almost any choice will do in practice
    
  - Allthough it seems that a rather large [delta] may perform better 
    than smaller one, measurements have shown that the smallest [delta]
    of 4 is actually the fastest on a wide range of operations. It
    especially improves performance on worst-case scenarios like
    a sequence of ordered insertions.

  Note: in contrast to Adams' paper, we use a ratio of (at least) 2
  to decide whether a single or double rotation is needed. Allthough
  he actually proves that this ratio is needed to maintain the
  invariants, his implementation uses a (invalid) ratio of 1. 
  He is aware of the problem though since he has put a comment in his 
  original source code that he doesn't care about generating a 
  slightly inbalanced tree since it doesn't seem to matter in practice. 
  However (since we use quickcheck :-) we will stick to strictly balanced 
  trees.
--------------------------------------------------------------------}
delta,ratio :: Int
delta = 4
ratio = 2

balance :: a -> Set a -> Set a -> Set a
balance x l r
  | sizeL + sizeR <= 1    = Bin sizeX x l r
  | sizeR >= delta*sizeL  = rotateL x l r
  | sizeL >= delta*sizeR  = rotateR x l r
  | otherwise             = Bin sizeX x l r
  where
    sizeL = size l
    sizeR = size r
    sizeX = sizeL + sizeR + 1

-- rotate
rotateL x l r@(Bin _ _ ly ry)
  | size ly < ratio*size ry = singleL x l r
  | otherwise               = doubleL x l r

rotateR x l@(Bin _ _ ly ry) r
  | size ry < ratio*size ly = singleR x l r
  | otherwise               = doubleR x l r

-- basic rotations
singleL x1 t1 (Bin _ x2 t2 t3)  = bin x2 (bin x1 t1 t2) t3
singleR x1 (Bin _ x2 t1 t2) t3  = bin x2 t1 (bin x1 t2 t3)

doubleL x1 t1 (Bin _ x2 (Bin _ x3 t2 t3) t4) = bin x3 (bin x1 t1 t2) (bin x2 t3 t4)
doubleR x1 (Bin _ x2 t1 (Bin _ x3 t2 t3)) t4 = bin x3 (bin x2 t1 t2) (bin x1 t3 t4)


{--------------------------------------------------------------------
  The bin constructor maintains the size of the tree
--------------------------------------------------------------------}
bin :: a -> Set a -> Set a -> Set a
bin x l r
  = Bin (size l + size r + 1) x l r


{--------------------------------------------------------------------
  Utilities
--------------------------------------------------------------------}
foldlStrict f z xs
  = case xs of
      []     -> z
      (x:xx) -> let z' = f z x in seq z' (foldlStrict f z' xx)


{--------------------------------------------------------------------
  Debugging
--------------------------------------------------------------------}
-- | /O(n)/. Show the tree that implements the set. The tree is shown
-- in a compressed, hanging format.
showTree :: Show a => Set a -> String
showTree s
  = showTreeWith True False s


{- | /O(n)/. The expression (@showTreeWith hang wide map@) shows
 the tree that implements the set. If @hang@ is
 @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
 @wide@ is 'True', an extra wide version is shown.

> Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1..5]
> 4
> +--2
> |  +--1
> |  +--3
> +--5
> 
> Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1..5]
> 4
> |
> +--2
> |  |
> |  +--1
> |  |
> |  +--3
> |
> +--5
> 
> Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1..5]
> +--5
> |
> 4
> |
> |  +--3
> |  |
> +--2
>    |
>    +--1

-}
showTreeWith :: Show a => Bool -> Bool -> Set a -> String
showTreeWith hang wide t
  | hang      = (showsTreeHang wide [] t) ""
  | otherwise = (showsTree wide [] [] t) ""

showsTree :: Show a => Bool -> [String] -> [String] -> Set a -> ShowS
showsTree wide lbars rbars t
  = case t of
      Tip -> showsBars lbars . showString "|\n"
      Bin sz x Tip Tip
          -> showsBars lbars . shows x . showString "\n" 
      Bin sz x l r
          -> showsTree wide (withBar rbars) (withEmpty rbars) r .
             showWide wide rbars .
             showsBars lbars . shows x . showString "\n" .
             showWide wide lbars .
             showsTree wide (withEmpty lbars) (withBar lbars) l

showsTreeHang :: Show a => Bool -> [String] -> Set a -> ShowS
showsTreeHang wide bars t
  = case t of
      Tip -> showsBars bars . showString "|\n" 
      Bin sz x Tip Tip
          -> showsBars bars . shows x . showString "\n" 
      Bin sz x l r
          -> showsBars bars . shows x . showString "\n" . 
             showWide wide bars .
             showsTreeHang wide (withBar bars) l .
             showWide wide bars .
             showsTreeHang wide (withEmpty bars) r


showWide wide bars 
  | wide      = showString (concat (reverse bars)) . showString "|\n" 
  | otherwise = id

showsBars :: [String] -> ShowS
showsBars bars
  = case bars of
      [] -> id
      _  -> showString (concat (reverse (tail bars))) . showString node

node           = "+--"
withBar bars   = "|  ":bars
withEmpty bars = "   ":bars

{--------------------------------------------------------------------
  Assertions
--------------------------------------------------------------------}
-- | /O(n)/. Test if the internal set structure is valid.
valid :: Ord a => Set a -> Bool
valid t
  = balanced t && ordered t && validsize t

ordered t
  = bounded (const True) (const True) t
  where
    bounded lo hi t
      = case t of
          Tip           -> True
          Bin sz x l r  -> (lo x) && (hi x) && bounded lo (<x) l && bounded (>x) hi r

balanced :: Set a -> Bool
balanced t
  = case t of
      Tip           -> True
      Bin sz x l r  -> (size l + size r <= 1 || (size l <= delta*size r && size r <= delta*size l)) &&
                       balanced l && balanced r


validsize t
  = (realsize t == Just (size t))
  where
    realsize t
      = case t of
          Tip          -> Just 0
          Bin sz x l r -> case (realsize l,realsize r) of
                            (Just n,Just m)  | n+m+1 == sz  -> Just sz
                            other            -> Nothing

{-
{--------------------------------------------------------------------
  Testing
--------------------------------------------------------------------}
testTree :: [Int] -> Set Int
testTree xs   = fromList xs
test1 = testTree [1..20]
test2 = testTree [30,29..10]
test3 = testTree [1,4,6,89,2323,53,43,234,5,79,12,9,24,9,8,423,8,42,4,8,9,3]

{--------------------------------------------------------------------
  QuickCheck
--------------------------------------------------------------------}
qcheck prop
  = check config prop
  where
    config = Config
      { configMaxTest = 500
      , configMaxFail = 5000
      , configSize    = \n -> (div n 2 + 3)
      , configEvery   = \n args -> let s = show n in s ++ [ '\b' | _ <- s ]
      }


{--------------------------------------------------------------------
  Arbitrary, reasonably balanced trees
--------------------------------------------------------------------}
instance (Enum a) => Arbitrary (Set a) where
  arbitrary = sized (arbtree 0 maxkey)
            where maxkey  = 10000

arbtree :: (Enum a) => Int -> Int -> Int -> Gen (Set a)
arbtree lo hi n
  | n <= 0        = return Tip
  | lo >= hi      = return Tip
  | otherwise     = do{ i  <- choose (lo,hi)
                      ; m  <- choose (1,30)
                      ; let (ml,mr)  | m==(1::Int)= (1,2)
                                     | m==2       = (2,1)
                                     | m==3       = (1,1)
                                     | otherwise  = (2,2)
                      ; l  <- arbtree lo (i-1) (n `div` ml)
                      ; r  <- arbtree (i+1) hi (n `div` mr)
                      ; return (bin (toEnum i) l r)
                      }  


{--------------------------------------------------------------------
  Valid tree's
--------------------------------------------------------------------}
forValid :: (Enum a,Show a,Testable b) => (Set a -> b) -> Property
forValid f
  = forAll arbitrary $ \t -> 
--    classify (balanced t) "balanced" $
    classify (size t == 0) "empty" $
    classify (size t > 0  && size t <= 10) "small" $
    classify (size t > 10 && size t <= 64) "medium" $
    classify (size t > 64) "large" $
    balanced t ==> f t

forValidIntTree :: Testable a => (Set Int -> a) -> Property
forValidIntTree f
  = forValid f

forValidUnitTree :: Testable a => (Set Int -> a) -> Property
forValidUnitTree f
  = forValid f


prop_Valid 
  = forValidUnitTree $ \t -> valid t

{--------------------------------------------------------------------
  Single, Insert, Delete
--------------------------------------------------------------------}
prop_Single :: Int -> Bool
prop_Single x
  = (insert x empty == singleton x)

prop_InsertValid :: Int -> Property
prop_InsertValid k
  = forValidUnitTree $ \t -> valid (insert k t)

prop_InsertDelete :: Int -> Set Int -> Property
prop_InsertDelete k t
  = not (member k t) ==> delete k (insert k t) == t

prop_DeleteValid :: Int -> Property
prop_DeleteValid k
  = forValidUnitTree $ \t -> 
    valid (delete k (insert k t))

{--------------------------------------------------------------------
  Balance
--------------------------------------------------------------------}
prop_Join :: Int -> Property 
prop_Join x
  = forValidUnitTree $ \t ->
    let (l,r) = split x t
    in valid (join x l r)

prop_Merge :: Int -> Property 
prop_Merge x
  = forValidUnitTree $ \t ->
    let (l,r) = split x t
    in valid (merge l r)


{--------------------------------------------------------------------
  Union
--------------------------------------------------------------------}
prop_UnionValid :: Property
prop_UnionValid
  = forValidUnitTree $ \t1 ->
    forValidUnitTree $ \t2 ->
    valid (union t1 t2)

prop_UnionInsert :: Int -> Set Int -> Bool
prop_UnionInsert x t
  = union t (singleton x) == insert x t

prop_UnionAssoc :: Set Int -> Set Int -> Set Int -> Bool
prop_UnionAssoc t1 t2 t3
  = union t1 (union t2 t3) == union (union t1 t2) t3

prop_UnionComm :: Set Int -> Set Int -> Bool
prop_UnionComm t1 t2
  = (union t1 t2 == union t2 t1)


prop_DiffValid
  = forValidUnitTree $ \t1 ->
    forValidUnitTree $ \t2 ->
    valid (difference t1 t2)

prop_Diff :: [Int] -> [Int] -> Bool
prop_Diff xs ys
  =  toAscList (difference (fromList xs) (fromList ys))
    == List.sort ((List.\\) (nub xs)  (nub ys))

prop_IntValid
  = forValidUnitTree $ \t1 ->
    forValidUnitTree $ \t2 ->
    valid (intersection t1 t2)

prop_Int :: [Int] -> [Int] -> Bool
prop_Int xs ys
  =  toAscList (intersection (fromList xs) (fromList ys))
    == List.sort (nub ((List.intersect) (xs)  (ys)))

{--------------------------------------------------------------------
  Lists
--------------------------------------------------------------------}
prop_Ordered
  = forAll (choose (5,100)) $ \n ->
    let xs = [0..n::Int]
    in fromAscList xs == fromList xs

prop_List :: [Int] -> Bool
prop_List xs
  = (sort (nub xs) == toList (fromList xs))
-}