/usr/include/ginac/tensor.h is in libginac-dev 1.6.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | /** @file tensor.h
*
* Interface to GiNaC's special tensors. */
/*
* GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef GINAC_TENSOR_H
#define GINAC_TENSOR_H
#include "ex.h"
#include "archive.h"
namespace GiNaC {
/** This class holds one of GiNaC's predefined special tensors such as the
* delta and the metric tensors. They are represented without indices.
* To attach indices to them, wrap them in an object of class indexed. */
class tensor : public basic
{
GINAC_DECLARE_REGISTERED_CLASS(tensor, basic)
// functions overriding virtual functions from base classes
protected:
unsigned return_type() const { return return_types::noncommutative_composite; }
// non-virtual functions in this class
public:
/** Replace dummy index in contracted-with object by the contracting
* object's second index (used internally for delta and metric tensor
* contractions. */
bool replace_contr_index(exvector::iterator self, exvector::iterator other) const;
};
/** This class represents the delta tensor. If indexed, it must have exactly
* two indices of the same type. */
class tensdelta : public tensor
{
GINAC_DECLARE_REGISTERED_CLASS(tensdelta, tensor)
// functions overriding virtual functions from base classes
public:
bool info(unsigned inf) const;
ex eval_indexed(const basic & i) const;
bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;
// non-virtual functions in this class
protected:
unsigned return_type() const { return return_types::commutative; }
void do_print(const print_context & c, unsigned level) const;
void do_print_latex(const print_latex & c, unsigned level) const;
};
GINAC_DECLARE_UNARCHIVER(tensdelta);
/** This class represents a general metric tensor which can be used to
* raise/lower indices. If indexed, it must have exactly two indices of the
* same type which must be of class varidx or a subclass. */
class tensmetric : public tensor
{
GINAC_DECLARE_REGISTERED_CLASS(tensmetric, tensor)
// functions overriding virtual functions from base classes
public:
bool info(unsigned inf) const;
ex eval_indexed(const basic & i) const;
bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;
// non-virtual functions in this class
protected:
unsigned return_type() const { return return_types::commutative; }
void do_print(const print_context & c, unsigned level) const;
};
GINAC_DECLARE_UNARCHIVER(tensmetric);
/** This class represents a Minkowski metric tensor. It has all the
* properties of a metric tensor and is (as a matrix) equal to
* diag(1,-1,-1,...) or diag(-1,1,1,...). */
class minkmetric : public tensmetric
{
GINAC_DECLARE_REGISTERED_CLASS(minkmetric, tensmetric)
// other constructors
public:
/** Construct Lorentz metric tensor with given signature. */
minkmetric(bool pos_sig);
// functions overriding virtual functions from base classes
public:
bool info(unsigned inf) const;
ex eval_indexed(const basic & i) const;
/** Save (a.k.a. serialize) object into archive. */
void archive(archive_node& n) const;
/** Read (a.k.a. deserialize) object from archive. */
void read_archive(const archive_node& n, lst& syms);
// non-virtual functions in this class
protected:
unsigned return_type() const { return return_types::commutative; }
void do_print(const print_context & c, unsigned level) const;
void do_print_latex(const print_latex & c, unsigned level) const;
// member variables
private:
bool pos_sig; /**< If true, the metric is diag(-1,1,1...). Otherwise it is diag(1,-1,-1,...). */
};
GINAC_DECLARE_UNARCHIVER(minkmetric);
/** This class represents an antisymmetric spinor metric tensor which
* can be used to raise/lower indices of 2-component Weyl spinors. If
* indexed, it must have exactly two indices of the same type which
* must be of class spinidx or a subclass and have dimension 2. */
class spinmetric : public tensmetric
{
GINAC_DECLARE_REGISTERED_CLASS(spinmetric, tensmetric)
// functions overriding virtual functions from base classes
public:
bool info(unsigned inf) const;
ex eval_indexed(const basic & i) const;
bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;
protected:
void do_print(const print_context & c, unsigned level) const;
void do_print_latex(const print_latex & c, unsigned level) const;
};
GINAC_DECLARE_UNARCHIVER(spinmetric);
/** This class represents the totally antisymmetric epsilon tensor. If
* indexed, all indices must be of the same type and their number must
* be equal to the dimension of the index space. */
class tensepsilon : public tensor
{
GINAC_DECLARE_REGISTERED_CLASS(tensepsilon, tensor)
// other constructors
public:
tensepsilon(bool minkowski, bool pos_sig);
// functions overriding virtual functions from base classes
public:
bool info(unsigned inf) const;
ex eval_indexed(const basic & i) const;
bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;
/** Save (a.k.a. serialize) object into archive. */
void archive(archive_node& n) const;
/** Read (a.k.a. deserialize) object from archive. */
void read_archive(const archive_node& n, lst& syms);
// non-virtual functions in this class
protected:
unsigned return_type() const { return return_types::commutative; }
void do_print(const print_context & c, unsigned level) const;
void do_print_latex(const print_latex & c, unsigned level) const;
// member variables
private:
bool minkowski; /**< If true, tensor is in Minkowski-type space. Otherwise it is in a Euclidean space. */
bool pos_sig; /**< If true, the metric is assumed to be diag(-1,1,1...). Otherwise it is diag(1,-1,-1,...). This is only relevant if minkowski = true. */
};
GINAC_DECLARE_UNARCHIVER(tensepsilon);
// utility functions
/** Create a delta tensor with specified indices. The indices must be of class
* idx or a subclass. The delta tensor is always symmetric and its trace is
* the dimension of the index space.
*
* @param i1 First index
* @param i2 Second index
* @return newly constructed delta tensor */
ex delta_tensor(const ex & i1, const ex & i2);
/** Create a symmetric metric tensor with specified indices. The indices
* must be of class varidx or a subclass. A metric tensor with one
* covariant and one contravariant index is equivalent to the delta tensor.
*
* @param i1 First index
* @param i2 Second index
* @return newly constructed metric tensor */
ex metric_tensor(const ex & i1, const ex & i2);
/** Create a Minkowski metric tensor with specified indices. The indices
* must be of class varidx or a subclass. The Lorentz metric is a symmetric
* tensor with a matrix representation of diag(1,-1,-1,...) (negative
* signature, the default) or diag(-1,1,1,...) (positive signature).
*
* @param i1 First index
* @param i2 Second index
* @param pos_sig Whether the signature is positive
* @return newly constructed Lorentz metric tensor */
ex lorentz_g(const ex & i1, const ex & i2, bool pos_sig = false);
/** Create a spinor metric tensor with specified indices. The indices must be
* of class spinidx or a subclass and have a dimension of 2. The spinor
* metric is an antisymmetric tensor with a matrix representation of
* [[ [[ 0, 1 ]], [[ -1, 0 ]] ]].
*
* @param i1 First index
* @param i2 Second index
* @return newly constructed spinor metric tensor */
ex spinor_metric(const ex & i1, const ex & i2);
/** Create an epsilon tensor in a Euclidean space with two indices. The
* indices must be of class idx or a subclass, and have a dimension of 2.
*
* @param i1 First index
* @param i2 Second index
* @return newly constructed epsilon tensor */
ex epsilon_tensor(const ex & i1, const ex & i2);
/** Create an epsilon tensor in a Euclidean space with three indices. The
* indices must be of class idx or a subclass, and have a dimension of 3.
*
* @param i1 First index
* @param i2 Second index
* @param i3 Third index
* @return newly constructed epsilon tensor */
ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3);
/** Create an epsilon tensor in a Minkowski space with four indices. The
* indices must be of class varidx or a subclass, and have a dimension of 4.
*
* @param i1 First index
* @param i2 Second index
* @param i3 Third index
* @param i4 Fourth index
* @param pos_sig Whether the signature of the metric is positive
* @return newly constructed epsilon tensor */
ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4, bool pos_sig = false);
} // namespace GiNaC
#endif // ndef GINAC_TENSOR_H
|