/usr/include/ginac/hash_map.h is in libginac-dev 1.6.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 | /** @file hash_map.h
*
* Replacement for map<> using hash tables. */
/*
* GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef GINAC_HASH_MAP_H
#define GINAC_HASH_MAP_H
#include <algorithm>
#include <functional>
#include <iterator>
#include <list>
#include <utility>
namespace GiNaC {
/*
* "Hashmap Light" - buckets only contain one value, quadratic probing,
* grows automatically
*/
namespace internal {
// List of prime numbers shamelessly stolen from GCC STL
enum { num_primes = 29 };
static const unsigned long prime_list[num_primes] =
{
31ul, 53ul, 97ul, 193ul, 389ul,
769ul, 1543ul, 3079ul, 6151ul, 12289ul,
24593ul, 49157ul, 98317ul, 196613ul, 393241ul,
786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul,
25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul,
805306457ul, 1610612741ul, 3221225473ul, 4294967291ul
};
inline unsigned long next_prime(unsigned long n)
{
const unsigned long *first = prime_list;
const unsigned long *last = prime_list + num_primes;
const unsigned long *pos = std::lower_bound(first, last, n);
return pos == last ? *(last - 1) : *pos;
}
} // namespace internal
// Define default arguments
template <typename T, template <class> class A = std::allocator>
class exhashmap;
/** Pair Associative Container with 'ex' objects as keys, that is implemented
* with a hash table and can be used as a replacement for map<> in many cases.
*
* Differences to map<>:
* - no lower_bound()/upper_bound()
* - no reverse iterators, no rbegin()/rend()
* - no operator<()
* - comparison functor is hardcoded to ex_is_less
* - bucket_count() returns the number of buckets allocated in the hash table
* - insert() and erase() invalidate all iterators
* - average complexity of find() is constant time, worst case is O(n) */
template <typename T, template <class> class A>
class exhashmap {
public:
static const unsigned min_num_buckets = 31; // must be prime
// Standard types
typedef ex key_type;
typedef T mapped_type;
typedef std::pair<key_type, T> value_type;
typedef ex_is_less key_compare;
typedef ex_is_equal key_equal;
typedef value_type & reference;
typedef const value_type & const_reference;
typedef value_type * pointer;
typedef const value_type * const_pointer;
protected:
// Private types
enum bucket_state {
EMPTY, ///< bucket empty (never used)
USED, ///< bucket in use
ERASED ///< bucket empty (element deleted), but may be part of a search chain
};
typedef std::pair<bucket_state, value_type> Bucket;
public:
// More standard types
typedef A<Bucket> allocator_type;
protected:
// More private types
typedef std::vector<Bucket, allocator_type> Table;
typedef typename Table::iterator table_iterator;
typedef typename Table::const_iterator table_const_iterator;
public:
// Iterators
template <typename Pointer, typename Reference, class TableIterator>
class exhashmap_iterator : public std::iterator<std::forward_iterator_tag, value_type, typename Table::difference_type, Pointer, Reference> {
protected:
friend class exhashmap;
public:
exhashmap_iterator() {}
exhashmap_iterator(TableIterator t, TableIterator te)
: it(t), table_end(te) {}
// Allow iterator to const_iterator conversion
template <typename P, typename R, class TI>
exhashmap_iterator(const exhashmap_iterator<P, R, TI> &other)
: it(other.get_it_()), table_end(other.get_table_end_()) {}
typename exhashmap_iterator::reference operator*() const
{
return it->second;
}
typename exhashmap_iterator::pointer operator->() const
{
return &(it->second);
}
exhashmap_iterator &operator++()
{
increment();
return *this;
}
exhashmap_iterator operator++(int)
{
exhashmap_iterator tmp = *this;
increment();
return tmp;
}
template <typename P, typename R, class TI>
bool operator==(const exhashmap_iterator<P, R, TI> &other) const
{
return it == other.get_it_();
}
template <typename P, typename R, class TI>
bool operator!=(const exhashmap_iterator<P, R, TI> &other) const
{
return it != other.get_it_();
}
// Private access function
TableIterator get_it_() const { return it; }
TableIterator get_table_end_() const { return table_end; }
protected:
TableIterator it; ///< Pointer to current bucket
TableIterator table_end; ///< Pointer to one-past-last bucket
void increment()
{
if (it != table_end)
++it;
// Skip empty and erased buckets
while (it != table_end && it->first != USED)
++it;
}
};
typedef exhashmap_iterator<value_type*, value_type&, table_iterator> iterator;
typedef exhashmap_iterator<const value_type*, const value_type&, table_const_iterator> const_iterator;
// More standard types
typedef typename Table::size_type size_type;
typedef typename Table::difference_type difference_type;
class value_compare : public std::binary_function<value_type, value_type, bool>, private key_compare {
friend class exhashmap;
public:
bool operator()(const value_type &lhs, const value_type &rhs) const
{
return key_compare::operator()(lhs.first, rhs.first);
}
bool operator()(const key_type &lhs, const value_type &rhs) const
{
return key_compare::operator()(lhs, rhs.first);
}
bool operator()(const value_type &lhs, const key_type &rhs) const
{
return key_compare::operator()(lhs.first, rhs);
}
};
protected:
// Private data
size_type num_entries; ///< Number of values stored in container (cached for faster operation of size())
size_type num_buckets; ///< Number of buckets (= hashtab.size())
Table hashtab; ///< Vector of buckets, each bucket is kept sorted
/** Return index of key in hash table. */
static size_type hash_index(const key_type &x, size_type nbuckets)
{
return x.gethash() % nbuckets;
}
static table_iterator find_bucket(const key_type &x, table_iterator tab, size_type nbuckets);
static table_const_iterator find_bucket(const key_type &x, table_const_iterator tab, size_type nbuckets);
static table_iterator find_bucket_for_insertion(const key_type &x, table_iterator tab, size_type nbuckets);
/** Return pointer to bucket corresponding to key (or first empty bucket). */
table_iterator find_bucket(const key_type &x)
{
return find_bucket(x, hashtab.begin(), num_buckets);
}
/** Return pointer to bucket corresponding to key (or first empty bucket). */
table_const_iterator find_bucket(const key_type &x) const
{
return find_bucket(x, hashtab.begin(), num_buckets);
}
/** Return pointer to bucket corresponding to key (or first empty or erased bucket). */
table_iterator find_bucket_for_insertion(const key_type &x)
{
return find_bucket_for_insertion(x, hashtab.begin(), num_buckets);
}
/** Return number of entries above which the table will grow. */
size_type hwm() const
{
// Try to keep at least 25% of the buckets free
return num_buckets - (num_buckets >> 2);
}
void grow();
public:
// 23.3.1.1 Construct/copy/destroy
exhashmap()
: num_entries(0), num_buckets(min_num_buckets), hashtab(num_buckets, std::make_pair(EMPTY, std::make_pair(0, mapped_type()))) {}
explicit exhashmap(size_type nbuckets)
: num_entries(0), num_buckets(internal::next_prime(nbuckets)), hashtab(num_buckets, std::make_pair(EMPTY, std::make_pair(0, mapped_type()))) {}
template <class InputIterator>
exhashmap(InputIterator first, InputIterator last)
: num_entries(0), num_buckets(min_num_buckets), hashtab(num_buckets, std::make_pair(EMPTY, std::make_pair(0, mapped_type())))
{
insert(first, last);
}
exhashmap &operator=(const exhashmap &other)
{
exhashmap(other).swap(*this);
return *this;
}
// Iterators
iterator begin()
{
// Find first used bucket
table_iterator bucket = hashtab.begin();
while (bucket != hashtab.end() && bucket->first != USED)
++bucket;
return iterator(bucket, hashtab.end());
}
const_iterator begin() const
{
// Find first used bucket
table_const_iterator bucket = hashtab.begin();
while (bucket != hashtab.end() && bucket->first != USED)
++bucket;
return const_iterator(bucket, hashtab.end());
}
iterator end()
{
return iterator(hashtab.end(), hashtab.end());
}
const_iterator end() const
{
return const_iterator(hashtab.end(), hashtab.end());
}
// Capacity
bool empty() const
{
return num_entries == 0;
}
size_type size() const
{
return num_entries;
}
size_type max_size() const
{
return hashtab.max_size();
}
size_type bucket_count() const
{
return num_buckets;
}
// 23.3.1.2 Element access
T &operator[](const key_type &x)
{
return insert(value_type(x, mapped_type())).first->second;
}
// Modifiers
std::pair<iterator, bool> insert(const value_type &x);
iterator insert(iterator pos, const value_type &x)
{
return insert(x).first;
}
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{
for (; first != last; ++first)
insert(*first);
}
void erase(iterator position)
{
table_iterator bucket = position.get_it_();
bucket->first = ERASED;
bucket->second.first = 0;
--num_entries;
}
size_type erase(const key_type &x);
void swap(exhashmap &other)
{
hashtab.swap(other.hashtab);
std::swap(num_buckets, other.num_buckets);
std::swap(num_entries, other.num_entries);
}
void clear();
// Observers
key_compare key_comp() const
{
return key_compare();
}
value_compare value_comp() const
{
return value_compare();
}
// 23.3.1.3 Map operations
iterator find(const key_type &x);
const_iterator find(const key_type &x) const;
size_type count(const key_type &x) const
{
return find(x) == end() ? 0 : 1;
}
std::pair<iterator, iterator> equal_range(const key_type &x)
{
iterator i = find(x);
if (i == end())
return std::make_pair(i, i);
else {
iterator j = ++i;
return std::make_pair(i, j);
}
}
std::pair<const_iterator, const_iterator> equal_range(const key_type &x) const
{
const_iterator i = find(x);
if (i == end())
return std::make_pair(i, i);
else {
const_iterator j = ++i;
return std::make_pair(i, j);
}
}
friend bool operator==(const exhashmap &lhs, const exhashmap &rhs)
{
if (lhs.num_entries != rhs.num_entries || lhs.num_buckets != rhs.num_buckets)
return false;
// We can't compare the tables directly as the elements may be
// in different order due to the collision handling. We therefore
// look up each value from the lhs map in the rhs map separately.
for (const_iterator itl = lhs.begin(); itl != lhs.end(); ++itl) {
const_iterator itr = rhs.find(itl->first);
if (itr == rhs.end())
return false;
if (itl->second != itr->second)
return false;
}
return true;
}
friend bool operator!=(const exhashmap &lhs, const exhashmap &rhs)
{
return !(lhs == rhs);
}
#if 0
void dump() const
{
std::clog << "num_entries = " << num_entries << std::endl;
std::clog << "num_buckets = " << num_buckets << std::endl;
size_type t = 0;
for (table_const_iterator it = hashtab.begin(); it != hashtab.end(); ++it, ++t) {
std::clog << " bucket " << t << ": ";
std::clog << (it->first == EMPTY ? "free" : (it->first == USED ? "used" : "erased")) << ", " << it->second.first << " -> " << it->second.second << std::endl;
}
}
#endif
};
/** Return pointer to bucket corresponding to key (or first empty bucket). */
template <typename T, template <class> class A>
inline typename exhashmap<T, A>::table_iterator exhashmap<T, A>::find_bucket(const key_type &x, table_iterator tab, size_type nbuckets)
{
// Quadratic probing
size_type h = hash_index(x, nbuckets);
size_type d = 1;
table_iterator it = tab + h;
while (it->first != EMPTY && !(it->first == USED && key_equal()(it->second.first, x))) {
h = (h + d) % nbuckets;
d += 2;
it = tab + h;
}
return it;
}
/** Return pointer to bucket corresponding to key (or first empty bucket). */
template <typename T, template <class> class A>
inline typename exhashmap<T, A>::table_const_iterator exhashmap<T, A>::find_bucket(const key_type &x, table_const_iterator tab, size_type nbuckets)
{
// Quadratic probing
size_type h = hash_index(x, nbuckets);
size_type d = 1;
table_const_iterator it = tab + h;
while (it->first != EMPTY && !(it->first == USED && key_equal()(it->second.first, x))) {
h = (h + d) % nbuckets;
d += 2;
it = tab + h;
}
return it;
}
/** Return pointer to bucket corresponding to key (or first empty or erased bucket). */
template <typename T, template <class> class A>
inline typename exhashmap<T, A>::table_iterator exhashmap<T, A>::find_bucket_for_insertion(const key_type &x, table_iterator tab, size_type nbuckets)
{
// Quadratic probing
size_type h = hash_index(x, nbuckets);
size_type d = 1;
table_iterator it = tab + h;
while (it->first != EMPTY && !key_equal()(it->second.first, x)) {
h = (h + d) % nbuckets;
d += 2;
it = tab + h;
}
return it;
}
/** Grow hash table */
template <typename T, template <class> class A>
void exhashmap<T, A>::grow()
{
// Allocate new empty hash table
size_type new_num_buckets = internal::next_prime(num_buckets + 1);
Table new_hashtab;
new_hashtab.resize(new_num_buckets);
for (table_iterator it = new_hashtab.begin(); it != new_hashtab.end(); ++it)
it->first = EMPTY;
// Re-insert all elements into new table
for (table_const_iterator it = hashtab.begin(); it != hashtab.end(); ++it) {
if (it->first == USED) {
table_iterator bucket = find_bucket(it->second.first, new_hashtab.begin(), new_num_buckets);
*bucket = *it;
}
}
// Swap with the old table
hashtab.swap(new_hashtab);
num_buckets = new_num_buckets;
}
template <typename T, template <class> class A>
std::pair<typename exhashmap<T, A>::iterator, bool> exhashmap<T, A>::insert(const value_type &x)
{
table_iterator bucket = find_bucket_for_insertion(x.first);
if (bucket->first == USED) {
// Value already in map
return std::make_pair(iterator(bucket, hashtab.end()), false);
} else {
// Insert new value
bucket->first = USED;
bucket->second = x;
++num_entries;
if (num_entries >= hwm()) {
grow();
bucket = find_bucket(x.first);
}
return std::make_pair(iterator(bucket, hashtab.end()), true);
}
}
template <typename T, template <class> class A>
typename exhashmap<T, A>::size_type exhashmap<T, A>::erase(const key_type &x)
{
iterator i = find(x);
if (i != end()) {
erase(i);
return 1;
} else
return 0;
}
template <typename T, template <class> class A>
typename exhashmap<T, A>::iterator exhashmap<T, A>::find(const key_type &x)
{
table_iterator bucket = find_bucket(x);
if (bucket->first == USED)
return iterator(bucket, hashtab.end());
else
return end();
}
template <typename T, template <class> class A>
typename exhashmap<T, A>::const_iterator exhashmap<T, A>::find(const key_type &x) const
{
table_const_iterator bucket = find_bucket(x);
if (bucket->first == USED)
return const_iterator(bucket, hashtab.end());
else
return end();
}
template <typename T, template <class> class A>
void exhashmap<T, A>::clear()
{
for (table_iterator i = hashtab.begin(); i != hashtab.end(); ++i) {
i->first = EMPTY;
i->second.first = 0;
i->second.second = mapped_type();
}
num_entries = 0;
}
} // namespace GiNaC
// Specializations of Standard Library algorithms
namespace std {
/** Specialization of std::swap() for exhashmap. */
template <typename T, template <class> class A>
inline void swap(GiNaC::exhashmap<T, A> &lhs, GiNaC::exhashmap<T, A> &rhs)
{
lhs.swap(rhs);
}
} // namespace std
#endif // ndef GINAC_HASH_MAP_H
|