/usr/include/ga/GAScaling.h is in libga-dev 2.4.7-3.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | // $Header$
/* ----------------------------------------------------------------------------
scaling.h
mbwall 10aug94
Copyright (c) 1995 Massachusetts Institute of Technology
all rights reserved
DESCRIPTION:
This is the GAScaling class. It is used to do scaling on a population. When
a genome is evaluated, the user's objective function provides an overall
rating for each genome. The GA is concerned with fitness, not objective
score (unless you do no scaling). So this object is the container for the
scaled values.
Examples of scaling include linear scaling, sigma truncation, and power law.
Goldberg's sharing function is also a type of scaling, and it is implemented
here as a unique class.
The scaling class is designed to be used with a population. It is stupid -
it does know how to update itself, but it must be told when.
---------------------------------------------------------------------------- */
#ifndef _ga_scaling_h_
#define _ga_scaling_h_
#include <ga/gaconfig.h>
#include <ga/gaid.h>
#include <ga/gatypes.h>
#include <ga/GAGenome.h>
class GAPopulation;
extern float gaDefLinearScalingMultiplier;
extern float gaDefSigmaTruncationMultiplier;
extern float gaDefPowerScalingFactor;
extern float gaDefSharingCutoff;
/* ----------------------------------------------------------------------------
Scaling
The scaling object is used to scale the objective scores of a population to
avoid clustering and premature convergence (among other things). See golberg
for more about the theory. This is basically just a container for any data
that the scaling object might need to do its thing. The simplest scalings
don't store any data.
---------------------------------------------------------------------------- */
class GAScalingScheme : public GAID {
public:
GADefineIdentity("GAScalingScheme", GAID::Scaling);
GAScalingScheme() {}
GAScalingScheme(const GAScalingScheme& s) { copy(s); }
GAScalingScheme& operator=(const GAScalingScheme& s) {copy(s); return *this;}
virtual ~GAScalingScheme() { }
virtual GAScalingScheme * clone() const=0;
virtual void copy(const GAScalingScheme &) {}
virtual void evaluate(const GAPopulation & p)=0;
};
/* ----------------------------------------------------------------------------
NoScaling
---------------------------------------------------------------------------- */
class GANoScaling : public GAScalingScheme {
public:
GADefineIdentity("GANoScaling", GAID::NoScaling);
GANoScaling() : GAScalingScheme() {}
GANoScaling(const GANoScaling &) : GAScalingScheme() {}
GANoScaling& operator=(const GAScalingScheme&){ return *this; }
virtual ~GANoScaling(){}
virtual GAScalingScheme * clone() const {return new GANoScaling(*this);}
virtual void evaluate(const GAPopulation & p);
};
/* ----------------------------------------------------------------------------
LinearScaling
This scaling object does linear scaling as described in goldberg pp 122-124.
---------------------------------------------------------------------------- */
#if USE_LINEAR_SCALING == 1
class GALinearScaling : public GAScalingScheme {
public:
GADefineIdentity("GALinearScaling", GAID::LinearScaling);
GALinearScaling(float fm=gaDefLinearScalingMultiplier) {multiplier(fm);}
GALinearScaling(const GALinearScaling & arg) {copy(arg);}
GALinearScaling & operator=(const GAScalingScheme & arg)
{copy(arg); return(*this);}
virtual ~GALinearScaling(){}
virtual GAScalingScheme * clone() const {return new GALinearScaling(*this);}
virtual void evaluate(const GAPopulation & p);
virtual void copy(const GAScalingScheme & arg){
if(&arg != this){
GAScalingScheme::copy(arg);
c=(DYN_CAST(const GALinearScaling&,arg)).c;
}
}
float multiplier(float fm);
float multiplier() const {return c;}
protected:
float c; // linear scaling multiplier
};
#endif
/* ----------------------------------------------------------------------------
SigmaTruncationScaling
This scaling object does sigma truncation as defined in goldberg p124.
---------------------------------------------------------------------------- */
#if USE_SIGMA_TRUNC_SCALING == 1
class GASigmaTruncationScaling : public GAScalingScheme {
public:
GADefineIdentity("GASigmaTruncationScaling", GAID::SigmaTruncationScaling);
GASigmaTruncationScaling(float m=gaDefSigmaTruncationMultiplier)
{multiplier(m);}
GASigmaTruncationScaling(const GASigmaTruncationScaling & arg){copy(arg);}
GASigmaTruncationScaling & operator=(const GAScalingScheme & arg)
{copy(arg); return(*this);}
virtual ~GASigmaTruncationScaling(){}
virtual GAScalingScheme * clone() const
{return new GASigmaTruncationScaling(*this);}
virtual void evaluate(const GAPopulation & p);
virtual void copy(const GAScalingScheme & arg){
if(&arg != this){
GAScalingScheme::copy(arg);
c=(DYN_CAST(const GASigmaTruncationScaling&,arg)).c;
}
}
float multiplier(float fm);
float multiplier() const {return c;}
protected:
float c; // std deviation multiplier
};
#endif
/* ----------------------------------------------------------------------------
PowerLawScaling
This scaling object does power law scaling as defined in goldberg p124.
---------------------------------------------------------------------------- */
#if USE_POWER_LAW_SCALING == 1
class GAPowerLawScaling : public GAScalingScheme {
public:
GADefineIdentity("GAPowerLawScaling", GAID::PowerLawScaling);
GAPowerLawScaling(float f=gaDefPowerScalingFactor) {k = f;}
GAPowerLawScaling(const GAPowerLawScaling & arg) {copy(arg);}
GAPowerLawScaling & operator=(const GAScalingScheme & arg)
{copy(arg); return(*this);}
virtual ~GAPowerLawScaling(){}
virtual GAScalingScheme * clone() const
{return new GAPowerLawScaling(*this);}
virtual void evaluate(const GAPopulation & p);
virtual void copy(const GAScalingScheme & arg){
if(&arg != this){
GAScalingScheme::copy(arg);
k=(DYN_CAST(const GAPowerLawScaling&,arg)).k;
}
}
float power(float p){return k=p;}
float power() const {return k;}
protected:
float k; // power scaling factor
};
#endif
/* ----------------------------------------------------------------------------
Sharing
This scaling object does sharing as described in goldberg p 192. This
implementation does triangular sharing with the (optional) alpha parameter for
changing the curvature of the sharing range and the (required) sigma parameter
for controlling the range of influence. If you want a different type of
sharing function, then derive from this class and define a new (virtual)
evaluate method and add whatever member data you need to specify the shape
of your sharing function.
We use the distance function to scale the objective scores of the
genomes so that if there are many similar genomes in a population
their scores will be decreased, thus giving sub-species a greater chance to
reproduce.
This sharing function is defined as follows:
/
| 1 - (d(i,j)/sigma) ^ alpha d(i,j) < sigma
s(d(i,j)) = |
| 0 d(i,j) >= sigma
\
where d is the distance between any two individuals and is defined such
that d(i,j) = 0 means that individuals i and j are identical. d() has no
upper bound, but it is never negative.
The alpha controls the shape of the sharing function. When alpha=1 then
the 'curve' is a straight line. If alpha is < 1 then the curves are concave,
if alpha is > 1 then the curves are convex.
If you decide to use this type of sharing, be careful of the sigma value
that you use. It can make a HUGE difference, depending upon the objective.
Distance functions are independent of the sharing functions (as defined in
Goldberg, that is).
A similarity (distance) function is used with the sharing object. It is a
type of speciation (similar in functionality to DeJong crowding, but this uses
fitness scaling rather than replacement strategy to affect the speciation).
If the genomes are identical, the similarity function should return a value of
0.0, if completely different then return a value of 1.0. 0 means less
diversity means all genomes are the same.
You can specify whether the scaling should be maximize or minimize based.
If you are maximizing, the scaling will divide the raw score by the scaling
factor. If you are minimizing, the scaling will multiply the score by the
scaling factor. (By definition, the scaling factor will always be >= 1.0)
By default, the scaling object uses the max/min settings that it contains
(so you can set the scaling independently of the GA). If the scaling's min/max
was not set, then it tries to use the min/max settings in the GA that owns
the population to which the scaling object is attached. If there is no GA,
then it bases its min/max on the sort order of the population.
You can set the minimaxi to:
GA::MINIMIZE - scale by multiplying the raw scores
GA::MAXIMIZE - scale by dividing the raw scores
0 - minimize or maximize based upon the GA's settings
*** This should be called TriangularSharing rather than simply Sharing.
---------------------------------------------------------------------------- */
#if USE_SHARING == 1
class GASharing : public GAScalingScheme {
public:
GADefineIdentity("GASharing", GAID::Sharing);
GASharing(GAGenome::Comparator func,
float cut=gaDefSharingCutoff, float a=1.0)
{ N=0; d=(float*)0; df=func; _sigma = cut; _alpha = a; _minmax = 0; }
GASharing(float cut=gaDefSharingCutoff, float a=1.0)
{ N=0; d=(float*)0; df=0; _sigma = cut; _alpha = a; _minmax = 0; }
GASharing(const GASharing & arg) { N=0; d=(float*)0; copy(arg); }
GASharing & operator=(const GAScalingScheme & arg){copy(arg); return(*this);}
virtual ~GASharing(){ delete [] d;}
virtual GAScalingScheme * clone() const {return new GASharing(*this);}
virtual void copy(const GAScalingScheme & arg);
virtual void evaluate(const GAPopulation & p);
GAGenome::Comparator distanceFunction(GAGenome::Comparator f){return df=f;}
GAGenome::Comparator distanceFunction() const {return df;}
float sigma(float);
float sigma() const { return _sigma; }
float alpha(float c) { return _alpha = c; }
float alpha() const { return _alpha; }
int minimaxi(int i);
int minimaxi() const { return _minmax; }
protected:
GAGenome::Comparator df; // the user-defined distance function
unsigned int N; // how many do we have? (n of n-by-n)
float *d; // the distances for each genome pair
float _sigma; // absolute cutoff from central point
float _alpha; // controls the curvature of sharing f
int _minmax; // should we minimize or maximize?
};
#endif
#endif
|