This file is indexed.

/usr/include/flint/flintxx/tuple.h is in libflint-dev 2.4.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
/*=============================================================================

    This file is part of FLINT.

    FLINT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    FLINT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with FLINT; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2013 Tom Bachmann

******************************************************************************/

#ifndef CXX_TUPLE_H
#define CXX_TUPLE_H

#include "traits.h"

namespace flint {
///////////////////////////
// A general tuple class.
///////////////////////////
// This simply stores a head and a tail. Conventionally, tuples a built by
// nesting the tail. The last entry should be an empty_tuple (see below).
// So e.g. a pair of integers would be tuple<int, tuple<int, empty_tuple> >.
//
// There are some helpers in the mp namespace below.
namespace detail {
struct FILLIT { };
} // detail
namespace mp {
namespace htuples {
// Filling of tuples
template<class Tuple, class Filler>
Tuple fill(const Filler& f)
{
    return Tuple(detail::FILLIT(), f);
}
} // htuples
} // mp

template<class Head, class Tail>
struct tuple
{
    Head head;
    Tail tail;

    typedef Head head_t;
    typedef Tail tail_t;
    static const unsigned len = 1 + Tail::len;

    // Obtain a reference to head (convenience name for pairs).
    typename traits::reference<head_t>::type first() {return head;}
    typename traits::forwarding<head_t>::type first() const {return head;}

    // Obtain a reference to the head of the tail (convenience name for pairs).
    typename traits::reference<typename Tail::head_t>::type
        second() {return tail.head;}
    typename traits::forwarding<typename Tail::head_t>::type
        second() const {return tail.head;}

    tuple() {};
    tuple(typename traits::forwarding<Head>::type h,
          typename traits::forwarding<Tail>::type t)
        : head(h), tail(t)
    {
    }

    bool operator==(const tuple& other)
    {
        return head == other.head && tail == other.tail;
    }

    template<class T>
    void set(const T& t)
    {
        head = t.head;
        tail.set(t.tail);
    }
    template<class T>
    void set(T& t)
    {
        head = t.head;
        tail.set(t.tail);
    }

    template<class T>
    bool equals_elementwise(const T& t) const
    {
        return head == t.head && tail.equals_elementwise(t.tail);
    }

private:
    template<class Filler>
    tuple(detail::FILLIT fillit, const Filler& f)
        : head(f.template create<head_t>()), tail(fillit, f)
    {
    }

    template<class Tuple, class Filler>
    friend Tuple mp::htuples::fill(const Filler&);
    template<class H, class T>
    friend struct tuple;
};

struct empty_tuple
{
    struct empty { };
    typedef empty head_t;
    typedef empty tail_t;
    empty head;
    empty tail;
    static const unsigned len = 0;

    bool operator==(const empty_tuple&) {return true;}

    empty_tuple() {}

    void set(empty_tuple) {}
    bool equals_elementwise(empty_tuple) const {return true;}

private:
    template<class Filler>
    empty_tuple(detail::FILLIT fillit, const Filler& f)
    {
    }

    template<class Tuple, class Filler>
    friend Tuple mp::htuples::fill(const Filler&);
    template<class Head, class Tail>
    friend struct tuple;
};

namespace detail {
typedef void UNUSED;

template<class T>
struct maybe_forwarding
{
    typedef typename traits::forwarding<T>::type type;
    static type default_value();
};
template<>
struct maybe_forwarding<UNUSED>
{
    typedef UNUSED* type;
    static type default_value() {return 0;}
};
}
namespace mp {
// Helper to conveniently define tuple types, and marshall objects into
// tuples.
// Typical usage:
// typedef make_tuple<int, char, slong> maker;
// maker::type my_tuple = maker::make(1, 'a', WORD(2));
// TODO this would be a prime use for variadic templates ...
#define FLINTXX_MAKE_TUPLE_TEMPLATE_ARGS \
    class T1 = detail::UNUSED, class T2 = detail::UNUSED, \
    class T3 = detail::UNUSED, class T4 = detail::UNUSED, \
    class T5 = detail::UNUSED, class T6 = detail::UNUSED, \
    class T7 = detail::UNUSED, class T8 = detail::UNUSED
#define FLINTXX_MAKE_TUPLE_FUNC_ARGS \
    typename detail::maybe_forwarding<T1>::type t1 \
        = detail::maybe_forwarding<T1>::default_value(), \
    typename detail::maybe_forwarding<T2>::type t2 \
        = detail::maybe_forwarding<T2>::default_value(), \
    typename detail::maybe_forwarding<T3>::type t3 \
        = detail::maybe_forwarding<T3>::default_value(), \
    typename detail::maybe_forwarding<T4>::type t4 \
        = detail::maybe_forwarding<T4>::default_value(), \
    typename detail::maybe_forwarding<T5>::type t5 \
        = detail::maybe_forwarding<T5>::default_value(), \
    typename detail::maybe_forwarding<T6>::type t6 \
        = detail::maybe_forwarding<T6>::default_value(), \
    typename detail::maybe_forwarding<T7>::type t7 \
        = detail::maybe_forwarding<T7>::default_value(), \
    typename detail::maybe_forwarding<T8>::type t8 \
        = detail::maybe_forwarding<T8>::default_value()
#define FLINTXX_MAKE_TUPLE_TYPES_APPLYMACRO(func) \
    func(T1), func(T2), func(T3), func(T4), \
    func(T5), func(T6), func(T7), func(T8)
#define FLINTXX_MAKE_TUPLE_FUNC_ARG_NAMES t1, t2, t3, t4, t5, t6, t7, t8
template<FLINTXX_MAKE_TUPLE_TEMPLATE_ARGS>
struct make_tuple
{
    typedef make_tuple<T2, T3, T4, T5, T6, T7, T8> next;
    typedef typename next::type tail_t;
    typedef tuple<T1, tail_t> type;
    static type make(FLINTXX_MAKE_TUPLE_FUNC_ARGS)
    {
        return type(t1, next::make(t2, t3, t4, t5, t6, t7, t8));
    }
};
template<>
struct make_tuple<detail::UNUSED, detail::UNUSED, detail::UNUSED,
    detail::UNUSED, detail::UNUSED, detail::UNUSED, detail::UNUSED,
    detail::UNUSED>
{
    typedef detail::UNUSED* T;
    typedef empty_tuple type;
    // g++-4.4 bolts if we use (...), even though all arguments are PODs
    static empty_tuple make(T=0, T=0, T=0, T=0, T=0, T=0, T=0, T=0)
        {return empty_tuple();}
};


// Indexified access
template<class Tuple, unsigned idx>
struct tuple_get
{
    typedef tuple_get<typename Tuple::tail_t, idx-1> nget;
    typedef typename nget::type type;

    static typename traits::forwarding<type>::type get(const Tuple& t)
    {
        return nget::get(t.tail);
    }
    static typename traits::reference<type>::type get(Tuple& t)
    {
        return nget::get(t.tail);
    }
};

template<class Tuple>
struct tuple_get<Tuple, 0>
{
    typedef typename Tuple::head_t type;
    static typename traits::forwarding<type>::type get(const Tuple& t)
    {
        return t.head;
    }
    static typename traits::reference<type>::type get(Tuple& t)
    {
        return t.head;
    }
};

// Create a tuple backing a tuple of points.
// That is to say, given a tuple like <A*, B*, C*, D*>,
// compute a backing tuple type <A, B, C, D>.
// 
// If one of the types in the tuple is Return*, do not back it
// and instead feed it in separately. I.e. if Return is A*, then type
// will be just <B*, C*, D*>.
//
// The static member init(to, from, ret) can be used to initalize the tuple
// of pointers "to" to point to its backing in "from" and "ret".
template<class Tuple, class Return = void>
struct back_tuple;

// General case: non-empty tuple <Head, Tail>, and Return type cannot be
// merged in.
template<class Head, class Tail, class Return>
struct back_tuple<tuple<Head*, Tail>, Return>
{
    typedef tuple<Head, typename back_tuple<Tail, Return>::type> type;
    static void init(tuple<Head*, Tail>& to, type& from, Return* ret = 0)
    {
        back_tuple<Tail, Return>::init(to.tail, from.tail, ret);
        to.head = &from.head;
    }
};

// Merging case: non-empty tuple <Head, Tail>, and Return is Head*
template<class Head, class Tail>
struct back_tuple<tuple<Head*, Tail>, Head>
{
    typedef typename back_tuple<Tail, void /* no more merging */>::type type;
    static void init(tuple<Head*, Tail>& to, type& from, Head* ret = 0)
    {
        to.head = ret;
        back_tuple<Tail, void>::init(to.tail, from, 0 /* unused */ );
    }
};

// Base case: empty tuple; nothing to do.
template<class Return>
struct back_tuple<empty_tuple, Return>
{
    typedef empty_tuple type;
    static void init(empty_tuple& to, type& from, Return* ret = 0)
    {
    }
};

// Helper to concatenate two tuples.
//
// This has one member type, and three static member functions get_second,
// get_first and doit.
// "type" is a tuple type which can store the data of both Tuple1 and Tuple2.
// Then, given an element of type "type", get_first and get_second can be used
// to fill types Tuple1 and Tuple2. Note that get_second can return a constant
// reference, whereas get_first has to do copying.
// (But these copies should usually be inlined and optimized away by the
// compiler.)
//
// Example: Tuple1 = <A, B, C>, Tuple2 = <D, E>.
// Then type = <A, B, C, D, E>
//   get_second(t) = t.tail.tail.tail
//   get_first(t) = tuple(t.head, tuple(t.tail.head, tuple(
//                                   t.tail.tail.head, empty_tuple())));
//
template<class Tuple1, class Tuple2>
struct concat_tuple;

// Degenerate case: Tuple1 is empty.
template<class Tuple2>
struct concat_tuple<empty_tuple, Tuple2>
{
    typedef Tuple2 type;
    static const Tuple2& get_second(const Tuple2& t) {return t;}
    static empty_tuple get_first(const Tuple2& t) {return empty_tuple();}

    static type doit(const empty_tuple& t1, const Tuple2& t2) {return t2;}
};
// General case: non-empty Tuple1.
template<class Head, class Tail, class Tuple2>
struct concat_tuple<tuple<Head, Tail>, Tuple2>
{
    typedef tuple<Head, typename concat_tuple<Tail, Tuple2>::type> type;
    static const Tuple2& get_second(const type& t)
    {
        return concat_tuple<Tail, Tuple2>::get_second(t.tail);
    }
    static tuple<Head, Tail> get_first(const type& o)
    {
        return tuple<Head, Tail>(
                o.head,
                concat_tuple<Tail, Tuple2>::get_first(o.tail));
    }
    static type doit(const tuple<Head, Tail>& t1, const Tuple2& t2)
    {
        return type(t1.head, concat_tuple<Tail, Tuple2>::doit(t1.tail, t2));
    }
};


// Merging of tuples
//
// This takes two tuples, and computes a tuple type which can store either.
// As usual, the extraction functions require copying which can be amortized
// by the compiler.
//
template<class Tuple1, class Tuple2>
struct merge_tuple;
//{
//    typedef XYZ type;
//    Tuple1 get_first(const type& type);
//    Tuple2 get_second(const type& type);
//};

// General case
// NB: tail is *always* a sub-tuple of the second argument!
template<class Head, class Tail, class Tuple2>
struct merge_tuple<tuple<Head, Tail>, Tuple2>
{
public:
    typedef merge_tuple<Tail, Tuple2> comp1;
    typedef merge_tuple<tuple<Head, empty_tuple>, typename comp1::tail_t> comp2;
    typedef concat_tuple<typename comp1::used_t, typename comp2::type> concater;
    
public:
    typedef typename concater::type type;

    // This is the part of type into which we can still merge.
    typedef typename comp2::tail_t tail_t;

    typedef typename concat_tuple<
        typename comp1::used_t,
        typename comp2::used_t
      >::type used_t;

private:
    static typename comp1::type get_tail(const type& input)
    {
        typedef concat_tuple<
            typename comp1::used_t,
            typename comp1::tail_t
          > myconcat;
        return myconcat::doit(concater::get_first(input),
                    comp2::get_second(concater::get_second(input)));
    }

public:
    static tuple<Head, Tail> get_first(const type& input)
    {
        Head h = comp2::get_first(concater::get_second(input)).first();
        return tuple<Head, Tail>(h, comp1::get_first(get_tail(input)));
    }

    static Tuple2 get_second(const type& input)
    {
        return comp1::get_second(get_tail(input));
    }
};

// First argument a singleton, no merging
template<class T, class U, class Tail>
struct merge_tuple<tuple<T, empty_tuple>, tuple<U, Tail> >
{
private:
    typedef merge_tuple<tuple<T, empty_tuple>, Tail> comp;
    typedef concat_tuple<
        typename comp::used_t,
        tuple<U, typename comp::tail_t>
      > concater;

public:
    typedef typename comp::used_t used_t;
    typedef tuple<U, typename comp::tail_t> tail_t;
    typedef typename concater::type type;

private:
    static typename comp::type get_tail(const type& input)
    {
        typedef concat_tuple<
            typename comp::used_t,
            typename comp::tail_t
          > myconcat;
        return myconcat::doit(concater::get_first(input),
                concater::get_second(input).tail);
    }

public:
    static tuple<T, empty_tuple> get_first(const type& input)
    {
        return comp::get_first(get_tail(input));
    }

    static tuple<U, Tail> get_second(const type& input)
    {
        return tuple<U, Tail>(
                concater::get_second(input).head,
                comp::get_second(get_tail(input)));
    }
};

// First argument a singleton, with merging
template<class T, class Tail>
struct merge_tuple<tuple<T, empty_tuple>, tuple<T, Tail> >
{
    typedef tuple<T, Tail> type;
    typedef tuple<T, empty_tuple> used_t;
    typedef Tail tail_t;

    static tuple<T, empty_tuple> get_first(const type& input)
    {
        return make_tuple<T>::make(input.head);
    }

    static tuple<T, Tail> get_second(const type& input)
    {
        return input;
    }
};

// Termination case 1
template<class Tuple2>
struct merge_tuple<empty_tuple, Tuple2>
{
    typedef Tuple2 type;
    typedef type tail_t;
    typedef empty_tuple used_t;

    static empty_tuple get_first(const type& input)
    {
        return empty_tuple();
    }

    static Tuple2 get_second(const type& input)
    {
        return input;
    }
};

// It seems like this code path is unnecessary and in fact ambiguous.
// I am fairly convinced by now this is correct.
// However, in case issues ever come up, it seemed useful to me to retain this.
// -- Tom Bachmann (15/10/2013)
#if 0
// Termination case 2
template<class Tuple1>
struct merge_tuple<Tuple1, empty_tuple>
{
    typedef Tuple1 type;
    typedef type tail_t;
    typedef empty_tuple used_t;

    static Tuple1 get_first(const type& input)
    {
        return input;
    }

    static empty_tuple get_second(const type& input)
    {
        return empty_tuple();
    }
};
#endif

// Termination case 3
template<class T>
struct merge_tuple<tuple<T, empty_tuple>, empty_tuple>
{
    typedef tuple<T, empty_tuple> type;
    typedef empty_tuple tail_t;
    // NB: we "use" T here - it cannot be merged into it any longer!
    typedef type used_t;

    static empty_tuple get_second(const type& input)
    {
        return empty_tuple();
    }

    static tuple<T, empty_tuple> get_first(const type& input)
    {
        return input;
    }
};

// Termination case 4
template<>
struct merge_tuple<empty_tuple, empty_tuple>
{
    typedef empty_tuple type;
    typedef empty_tuple tail_t;
    typedef empty_tuple used_t;

    static empty_tuple get_first(const type& input) {return empty_tuple();}
    static empty_tuple get_second(const type& input) {return empty_tuple();}
};


// Creation and manipulation of homogeneous tuples

// Build a tuple type of "n" repetitions of "T".
template<class T, unsigned n>
struct make_homogeneous_tuple
{
    typedef tuple<T, typename make_homogeneous_tuple<T, n-1>::type> type;
};
template<class T>
struct make_homogeneous_tuple<T, 0>
{
    typedef empty_tuple type;
};

namespace htuples {
namespace hdetail {
template<unsigned n, class Tuple>
struct extract_helper
{
    typedef typename Tuple::head_t T;
    typedef typename Tuple::tail_t tail_t;
    typedef typename make_homogeneous_tuple<T, n>::type ht;

    static ht get_noskip(const Tuple& tuple)
    {
        return ht(tuple.head,
                extract_helper<n-1, tail_t>::get_noskip(
                    tuple.tail));
    }
};
template<class Tuple>
struct extract_helper<0, Tuple>
{
    static empty_tuple get_noskip(const Tuple&) {return empty_tuple();}
};

template<class Tuple>
struct remove_helper
{
    static const unsigned n = Tuple::len;
    typedef typename Tuple::tail_t tail_t;
    typedef typename Tuple::head_t T;
    static tail_t get(const Tuple& tuple, T res)
    {
        if(tuple.head == res)
            return tuple.tail;
        return tail_t(tuple.head, remove_helper<tail_t>::get(tuple.tail, res));
    }
};
template<class T>
struct remove_helper<tuple<T, empty_tuple> >
{
    static empty_tuple get(const tuple<T, empty_tuple>&, T)
    {
        return empty_tuple();
    }
};
} // hdetail

// Extract the first "n" values from the *homogeneous* tuple "tuple".
template<unsigned n, class Tuple>
inline typename make_homogeneous_tuple<typename Tuple::head_t, n>::type extract(
        const Tuple& tuple)
{
    return hdetail::extract_helper<n, Tuple>::get_noskip(tuple);
}

// Remove one element from the *homogeneous* tuple "tuple", if possible "res".
// Example:
//   t1 = (1, 2, 3, 4)
//   t2 = (1, 1, 1, 1)
//   t3 = (2, 3, 4, 5)
//
//   removeres(t1, 1) -> (2, 3, 4)
//   removeres(t2, 1) -> (1, 1, 1)
//   removeres(t3, 1) -> (2, 3, 4) or any other three element subset
template<class Tuple>
inline typename Tuple::tail_t
removeres(const Tuple& tuple, typename Tuple::head_t res)
{
    return hdetail::remove_helper<Tuple>::get(tuple, res);
}
} // htuples
} // mp

namespace traits {
// Compute if "Tuple" is of the form (U, U, .. U), or empty.
template<class Tuple, class U>
struct is_homogeneous_tuple : mp::and_<
    is_homogeneous_tuple<typename Tuple::tail_t, U>,
    mp::equal_types<typename Tuple::head_t, U> > { };
template<class U>
struct is_homogeneous_tuple<empty_tuple, U> : true_ { };

// Compute if T is a tuple
template<class T>
struct is_tuple : false_ { };
template<class Head, class Tail>
struct is_tuple<tuple<Head, Tail> > : true_ { };
template<>
struct is_tuple<empty_tuple> : true_ { };
}
} // flint

#endif