This file is indexed.

/usr/include/flint/flintxx/matrix.h is in libflint-dev 2.4.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*=============================================================================

    This file is part of FLINT.

    FLINT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    FLINT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with FLINT; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2013 Tom Bachmann

******************************************************************************/

// Common code shared among matrix classes

#ifndef FLINTXX_MATRIX_H
#define FLINTXX_MATRIX_H

#include "flint_classes.h"
#include "mp.h"
#include "rules.h"
#include "stdmath.h"
#include "ltuple.h"
#include "traits.h"
#include "tuple.h"
#include "../permxx.h"

namespace flint {
FLINT_DEFINE_BINOP(solve)
FLINT_DEFINE_BINOP(solve_fflu)
FLINT_DEFINE_THREEARY(mat_at)
FLINT_DEFINE_THREEARY(solve_fflu_precomp)
FLINT_DEFINE_UNOP(charpoly)
FLINT_DEFINE_UNOP(det)
FLINT_DEFINE_UNOP(det_fflu)
FLINT_DEFINE_UNOP(det_interpolate)
FLINT_DEFINE_UNOP(nullspace)
FLINT_DEFINE_UNOP(rref)
FLINT_DEFINE_UNOP(trace)
FLINT_DEFINE_UNOP(transpose)

FLINT_DEFINE_THREEARY(fflu)
FLINT_DEFINE_THREEARY_HERE_2DEFAULT(fflu, permxx*, 0, bool, false)

template<class T> struct matrix_traits : rules::UNIMPLEMENTED { };
// override this for the non-reference type of your choice
// {
//     template<class M> static slong rows(const M&);
//     template<class M> static slong cols(const M&);
//     template<class M> static ??? at(const M&, slong, slong);
//     template<class M> static ??? at(M&, slong, slong);
// };
namespace traits {
template <class T, class Enable = void> struct is_mat : is_implemented<
    matrix_traits<typename flint_classes::to_nonref<T>::type> > { };
template<class T> struct is_mat<T,
    typename mp::disable_if<flint_classes::is_flint_class<T> >::type>
        : mp::false_ { };
} // traits
namespace matrices {
namespace mdetail {
// Some helper traits used below.
template<class Data> struct second_is_mat_data : mp::false_ { };
template<class Data1, class Data2>
struct second_is_mat_data<tuple<Data1, tuple<Data2, empty_tuple> > >
    : traits::is_mat<typename traits::basetype<Data2>::type> { };
template<class Expr> struct second_is_mat
    : second_is_mat_data<typename Expr::data_t> { };

template<class Mat>
struct both_mat : mp::and_<
    traits::is_mat<
        typename traits::basetype<typename Mat::data_t::head_t>::type>,
    traits::is_mat<
        typename traits::basetype<typename Mat::data_t::tail_t::head_t>::type>
  > { };

// A more convenient way to obtain the traits associated to a non-immediate
// or non-nonref expression.
template<class Expr> struct immediate_traits
    : matrix_traits<typename flint_classes::to_nonref<Expr>::type> { };
} // mdetail

// For matrix expressions to create temporaries, it is necessary to know the
// dimensions of the result of a computation. This is a generic implementation,
// which assumes that the output dimensions are the same as the dimensions of
// the first argument, which is assumed to be a matrix, except if there are
// precisely two arguments only the second of which is a matrix, in which case
// we assume its the dimension of that.
// This implementation works correctly in many cases, e.g. matrix-addition or
// matrix-scalar multiplication.
template<class Operation>
struct outsize_generic
{
    template<class Mat>
    static slong rows(const Mat& m,
            typename mp::disable_if<mdetail::second_is_mat<Mat> >::type* = 0)
    {
        return m._data().head.rows();
    }
    template<class Mat>
    static slong cols(const Mat& m,
            typename mp::disable_if<mdetail::second_is_mat<Mat> >::type* = 0)
    {
        return m._data().head.cols();
    }

    template<class Mat>
    static slong rows(const Mat& m,
            typename mp::enable_if<mdetail::second_is_mat<Mat> >::type* = 0)
    {
        return m._data().tail.head.rows();
    }
    template<class Mat>
    static slong cols(const Mat& m,
            typename mp::enable_if<mdetail::second_is_mat<Mat> >::type* = 0)
    {
        return m._data().tail.head.cols();
    }
};

// This is the expression template used for computing the dimensions of an
// operation. Without further specialisation, it is just the generic
// implementation described above.
// If you introduce a new operation where the generic implementation is
// incorrect, you must specialise this template.
template<class Operation>
struct outsize : outsize_generic<Operation> { };

// Specialise immediates, where the dimensions are stored with the object.
template<>
struct outsize<operations::immediate>
{
    template<class Mat>
    static slong rows(const Mat& m)
    {
        return mdetail::immediate_traits<Mat>::rows(m);
    }
    template<class Mat>
    static slong cols(const Mat& m)
    {
        return mdetail::immediate_traits<Mat>::cols(m);
    }
};

// Specialise multiplication. For matrix-matrix multiplication, use
// the usual formula. For matrix-scalar multiplication, use the generic
// implementation.
template<>
struct outsize<operations::times>
{
    template<class Mat>
    static slong rows(const Mat& m,
            typename mp::enable_if<mdetail::both_mat<Mat> >::type* = 0)
    {
        return m._data().head.rows();
    }
    template<class Mat>
    static slong cols(const Mat& m,
            typename mp::enable_if<mdetail::both_mat<Mat> >::type* = 0)
    {
        return m._data().tail.head.cols();
    }

    template<class Mat>
    static slong rows(const Mat& m,
            typename mp::disable_if<mdetail::both_mat<Mat> >::type* = 0)
    {
        return outsize_generic<operations::times>::rows(m);
    }
    template<class Mat>
    static slong cols(const Mat& m,
            typename mp::disable_if<mdetail::both_mat<Mat> >::type* = 0)
    {
        return outsize_generic<operations::times>::cols(m);
    }
};
// Any particular multipication algorithm also has to be specialised.
template<>
struct outsize<operations::mul_classical_op>
    : outsize<operations::times> { };

// Specialise transpose.
template<>
struct outsize<operations::transpose_op>
{
    template<class Mat>
    static slong rows(const Mat& m)
    {
        return m._data().head.cols();
    }
    template<class Mat>
    static slong cols(const Mat& m)
    {
        return m._data().head.rows();
    }
};

// Specialise nullspace. Note that the nullspace computation functions in
// flint return a matrix the columns of which span the nullspace. Since the
// nullity is not known in advance in general, we have to allocate a square
// matrix.
template<>
struct outsize<operations::nullspace_op>
{
    template<class Mat>
    static slong rows(const Mat& m)
    {
        return m._data().head.cols();
    }
    template<class Mat>
    static slong cols(const Mat& m)
    {
        return m._data().head.cols();
    }
};

// This is a bit of a hack. Matrix operations returning a tuple typically
// only return one matrix. We key outsize on the inner operation to find out
// the dimensions. So e.g. solve(A, X).get<1>() (say) will invoke outsize
// with ltuple_get_op<1> as argument, which then invokes outsize with solve_op
// and (A, X) as argument.
template<unsigned n>
struct outsize<operations::ltuple_get_op<n> >
{
    template<class Mat>
    static slong rows(const Mat& m)
    {
        return outsize<
            typename Mat::data_t::head_t::operation_t>::rows(m._data().head);
    }
    template<class Mat>
    static slong cols(const Mat& m)
    {
        return outsize<
            typename Mat::data_t::head_t::operation_t>::cols(m._data().head);
    }
};

// This is not actually a matrix expression, but called by the above ...
template<>
struct outsize<operations::solve_op>
{
    template<class Mat>
    static slong rows(const Mat& m)
    {
        return m._data().second().rows();
    }
    template<class Mat>
    static slong cols(const Mat& m)
    {
        return m._data().second().cols();
    }
};
template<> struct outsize<operations::solve_fflu_op>
    : outsize<operations::solve_op> { };
template<>
struct outsize<operations::solve_fflu_precomp_op>
{
    template<class Mat>
    static slong rows(const Mat& m)
    {
        return m._data().tail.second().rows();
    }
    template<class Mat>
    static slong cols(const Mat& m)
    {
        return m._data().tail.second().cols();
    }
};

namespace mdetail {
struct base_traits
{
    template<class M>
    static slong rows(const M& m)
    {
        return matrices::outsize<typename M::operation_t>::rows(m);
    }
    template<class M>
    static slong cols(const M& m)
    {
        return matrices::outsize<typename M::operation_t>::cols(m);
    }
};
} // mdetail

// These traits classes are useful for implementing unified coefficient access.
// See fmpz_matxx etc for example usage.
template<class Mat>
struct generic_traits : mdetail::base_traits
{
    template<class T, class U>
    struct at
    {
        typedef FLINT_THREEARY_ENABLE_RETTYPE(mat_at, Mat, T, U)
            entry_ref_t;
        typedef entry_ref_t entry_srcref_t;

        static entry_srcref_t get(const Mat& m, T i, U j)
        {
            return mat_at(m, i, j);
        }
    };
};

template<class Srcref>
struct generic_traits_srcref : mdetail::base_traits
{
    template<class T, class U>
    struct at
    {
        typedef Srcref entry_ref_t;
        typedef Srcref entry_srcref_t;

        template<class M>
        static Srcref get(M m, T i, U j)
        {
            return mdetail::immediate_traits<M>::at(m, i, j);
        }
    };
};

template<class Ref>
struct generic_traits_ref : mdetail::base_traits
{
    template<class T, class U>
    struct at
    {
        typedef Ref entry_ref_t;
        typedef Ref entry_srcref_t;

        template<class M>
        static Ref get(M m, T i, U j)
        {
            return mdetail::immediate_traits<M>::at(m, i, j);
        }
    };
};

template<class Ref, class Srcref>
struct generic_traits_nonref : mdetail::base_traits
{
    template<class T, class U>
    struct at
    {
        typedef Ref entry_ref_t;
        typedef Srcref entry_srcref_t;

        template<class M>
        static Ref get(M& m, T i, U j)
        {
            return mdetail::immediate_traits<M>::at(m, i, j);
        }

        template<class M>
        static Srcref get(const M& m, T i, U j)
        {
            return mdetail::immediate_traits<M>::at(m, i, j);
        }
    };
};
} // matrices

// immediate functions
template<class Mat>
inline typename mp::enable_if<traits::is_mat<Mat>, slong>::type
rank(const Mat& m)
{
    return m.rank();
}

template<class Mat>
inline typename mp::enable_if<traits::is_mat<Mat>, slong>::type
find_pivot_any(const Mat& m, slong start, slong end, slong c)
{
    return m.find_pivot_any(start, end, c);
}

template<class Mat>
inline typename mp::enable_if<traits::is_mat<Mat>, slong>::type
find_pivot_partial(const Mat& m, slong start, slong end, slong c)
{
    return m.find_pivot_partial(start, end, c);
}
} // flint

// Define rows(), cols(), create_temporary() and at() methods.
// For this to work, Traits must behave like the above generic traits.
// Also your matrix class must have a static create_temporary_rowscols function.
// See fmpz_mat for an example.
#define FLINTXX_DEFINE_MATRIX_METHODS(Traits) \
template<class T, class U> \
typename Traits::template at<T, U>::entry_ref_t at(T i, U j) \
    {return Traits::template at<T, U>::get(*this, i, j);} \
template<class T, class U> \
typename Traits::template at<T, U>::entry_srcref_t at(T i, U j) const \
    {return Traits::template at<T, U>::get(*this, i, j);} \
\
slong rows() const {return Traits::rows(*this);} \
slong cols() const {return Traits::cols(*this);} \
evaluated_t create_temporary() const \
{ \
    return create_temporary_rowscols(*this, rows(), cols()); \
}

// Disable temporary merging. Requires create_temporary_rowscols.
// TODO do we really need the ltuple code everywhere?
#define FLINTXX_DEFINE_TEMPORARY_RULES(Matrix) \
namespace traits { \
template<> struct use_temporary_merging<Matrix> : mp::false_ { }; \
} /* traits */ \
namespace rules { \
template<class Expr> \
struct use_default_temporary_instantiation<Expr, Matrix> : mp::false_ { }; \
template<class Expr> \
struct instantiate_temporaries<Expr, Matrix, \
    typename mp::disable_if<flint_classes::is_Base<Matrix, Expr> >::type> \
{ \
    /* The only case where this should ever happen is if Expr is an ltuple */ \
    /* TODO static assert this */ \
    static Matrix get(const Expr& e) \
    { \
        typedef typename Expr::operation_t op_t; \
        return Matrix::create_temporary_rowscols(e, \
                matrices::outsize<op_t>::rows(e), \
                matrices::outsize<op_t>::cols(e)); \
    } \
}; \
template<class Expr> \
struct instantiate_temporaries<Expr, Matrix, \
    typename mp::enable_if<flint_classes::is_Base<Matrix, Expr> >::type> \
{ \
    static Matrix get(const Expr& e) \
    { \
        return e.create_temporary(); \
    } \
}; \
} /* rules */

// Add a fflu() member function to the matrix class.
#define FLINTXX_DEFINE_MEMBER_FFLU \
template<class T> typename detail::nary_op_helper2<operations::fflu_op, \
    typename base_t::derived_t, permxx*, T>::enable::type \
fflu(permxx* p, const T& t) const \
{ \
    return flint::fflu(*this, p, t); \
}

#endif