/usr/include/flint/flintxx/expression.h is in libflint-dev 2.4.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 | /*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Tom Bachmann
******************************************************************************/
#ifndef CXX_EXPRESSION_H
#define CXX_EXPRESSION_H
// TODO
// * static asserts
#include <iosfwd>
#include <string>
#include <cstdio>
#include "evaluation_tools.h"
#include "expression_traits.h"
#include "mp.h"
#include "rules.h"
#include "traits.h"
#include "tuple.h"
namespace flint {
namespace detail {
// Helper traits used by the "expression" class, in particular the evaluate()
// method. This is the general (i.e. non-immediate) case,
// which requires actual work.
template<class Operation, class Expr, class Data>
struct evaluation_traits
{
typedef typename Expr::derived_t derived_t;
typedef typename mp::find_evaluation<
Operation, Data, false>::type rule_t;
typedef typename mp::find_evaluation<
Operation, Data, true>::type temp_rule_t;
typedef typename rule_t::return_t evaluation_return_t;
typedef evaluation_return_t evaluated_t;
static evaluation_return_t evaluate(const derived_t& from)
{
evaluated_t res =
rules::instantiate_temporaries<derived_t, evaluated_t>::get(from);
evaluate_into_fresh(res, from);
return res;
}
template<class T>
static void evaluate_into(T& to, const derived_t& from)
{
typedef mp::back_tuple<typename rule_t::temporaries_t> back_t;
typename back_t::type temps_backing =
mp::htuples::fill<typename back_t::type>(
tools::temporaries_filler(from));
typename rule_t::temporaries_t temps;
back_t::init(temps, temps_backing, 0);
rule_t::doit(from._data(), temps, &to);
}
static void evaluate_into_fresh(evaluation_return_t& to, const derived_t& from)
{
typedef mp::back_tuple<
typename temp_rule_t::temporaries_t,
evaluation_return_t
> back_t;
typename back_t::type temps_backing =
mp::htuples::fill<typename back_t::type>(
tools::temporaries_filler(from));
typename temp_rule_t::temporaries_t temps;
back_t::init(temps, temps_backing, &to);
temp_rule_t::doit(from._data(), temps, &to);
}
};
// This is the special case of an immediate argument, where "evaluation" is
// at most assignment.
template<class Expr, class Data>
struct evaluation_traits<operations::immediate, Expr, Data>
{
typedef typename Expr::derived_t derived_t;
typedef typename Expr::derived_t evaluated_t;
typedef evaluated_t& evaluation_return_t;
static evaluated_t& evaluate(derived_t& d) {return d;}
static const evaluated_t& evaluate(const derived_t& d) {return d;}
template<class T>
static void evaluate_into(T& to, const derived_t& from)
{
rules::assignment<T, derived_t>::doit(to, from);
}
static void evaluate_into_fresh(derived_t& to, const derived_t& from)
{
evaluate_into(to, from);
}
};
} // detail
// The main expression template class.
//
// The argument Derived must have the following form:
// struct derived
// {
// template<class Operation, class Data>
// struct type
// {
// typedef XYZ result;
// };
// };
// See derived_wrapper below for a common example.
//
// Note that, while Data does not have to be default constructible,
// it *does* need to be copy-constructible, and have a working destructor.
template<class Derived, class Operation, class Data>
class expression
{
private:
Data data;
protected:
explicit expression(const Data& d) : data(d) {}
public:
// internal -- see is_expression implementation.
typedef void IS_EXPRESSION_MARKER;
typedef detail::evaluation_traits<Operation, expression, Data> ev_traits_t;
typedef typename Derived::template type<Operation, Data>::result derived_t;
typedef typename ev_traits_t::evaluated_t evaluated_t;
typedef typename ev_traits_t::evaluation_return_t evaluation_return_t;
typedef Data data_t;
typedef Operation operation_t;
private:
derived_t& downcast() {return *static_cast<derived_t*>(this);}
const derived_t& downcast() const
{
return *static_cast<const derived_t*>(this);
}
// Some helpers for initialization, since it is not possible to
// conditionally enable constructors in C++98
template<class T>
static data_t get_data(const T& t,
typename mp::disable_if<traits::is_lazy_expr<T> >::type* = 0)
{
return data_t(t);
}
template<class T>
static data_t get_data(T& t,
typename mp::disable_if<traits::is_lazy_expr<T> >::type* = 0)
{
return data_t(t);
}
template<class T>
static data_t get_data(const T& t,
typename mp::enable_if<traits::is_lazy_expr<T> >::type* = 0,
typename mp::disable_if<
mp::equal_types<typename T::evaluated_t, derived_t> >::type* = 0)
{
return data_t(t.evaluate());
}
template<class T>
static data_t get_data(const T& t,
typename mp::enable_if<traits::is_lazy_expr<T> >::type* = 0,
typename mp::enable_if<
mp::equal_types<typename T::evaluated_t, derived_t> >::type* = 0)
{
return data_t(t.evaluate()._data());
}
// Invoke the data copy constructor when appropriate
static data_t get_data(const derived_t& o)
{
return data_t(o._data());
}
static data_t get_data(derived_t& o)
{
return data_t(o._data());
}
// Having the empty constructor here delays its instantiation, and allows
// compiling even if data is *not* default constructible.
static data_t get_data() {return data_t();}
public:
// forwarded constructors
template<class T>
explicit expression(const T& t)
: data(get_data(t)) {}
template<class T>
explicit expression(T& t)
: data(get_data(t)) {}
template<class T, class U>
expression(const T& t, const U& u)
: data(t, u) {}
template<class T, class U>
expression(T& t, const U& u)
: data(t, u) {}
template<class T, class U, class V>
expression(const T& t, const U& u, const V& v)
: data(t, u, v) {}
template<class T, class U, class V>
expression(T& t, const U& u, const V& v)
: data(t, u, v) {}
template<class T, class U, class V, class W>
expression(const T& t, const U& u, const V& v, const W& w)
: data(t, u, v, w) {}
template<class T, class U, class V, class W>
expression(T& t, const U& u, const V& v, const W& w)
: data(t, u, v, w) {}
expression() : data(get_data()) {}
expression& operator=(const expression& o)
{
this->set(o.downcast());
return *this;
}
// See rules::instantiate_temporaries for explanation.
evaluated_t create_temporary() const
{
return evaluated_t();
}
Data& _data() {return data;}
const Data& _data() const {return data;}
void print(std::ostream& o) const
{
tools::print_using_str<evaluated_t>::doit(evaluate(), o);
}
std::string to_string(int base = 10) const
{
return rules::to_string<evaluated_t>::get(evaluate(), base);
}
template<class T>
T to() const
{
return rules::conversion<T, evaluated_t>::get(evaluate());
}
int print(FILE* f = stdout) const
{
return rules::cprint<evaluated_t>::doit(f, evaluate());
}
int print_pretty(FILE* f = stdout) const
{
return rules::print_pretty<evaluated_t>::doit(f, evaluate());
}
template<class T>
int print_pretty(const T& extra, FILE* f = stdout) const
{
return rules::print_pretty<evaluated_t>::doit(f, evaluate(), extra);
}
int read(FILE* f = stdin)
{
return rules::read<derived_t>::doit(f, downcast());
}
typename traits::make_const<evaluation_return_t>::type evaluate() const
{
return ev_traits_t::evaluate(downcast());
}
evaluation_return_t evaluate() {return ev_traits_t::evaluate(downcast());}
template<class T>
void set(const T& t,
typename mp::enable_if<traits::is_expression<T> >::type* = 0,
typename mp::enable_if<traits::can_evaluate_into<
derived_t, typename T::evaluated_t> >::type* = 0)
{
T::ev_traits_t::evaluate_into(downcast(), t);
}
template<class T>
void set(const T& t,
typename mp::enable_if<traits::is_expression<T> >::type* = 0,
typename mp::disable_if<traits::can_evaluate_into<
derived_t, typename T::evaluated_t> >::type* = 0)
{
rules::assignment<derived_t, typename T::evaluated_t>::doit(
downcast(), t.evaluate());
}
template<class T>
void set(const T& t,
typename mp::disable_if<traits::is_expression<T> >::type* = 0)
{
rules::assignment<derived_t, T>::doit(downcast(), t);
}
template<class T>
bool equals(const T& t,
typename mp::enable_if<traits::is_lazy_expr<T> >::type* = 0) const
{
return equals(t.evaluate());
}
template<class T>
bool equals(const T& t,
typename mp::disable_if<traits::is_lazy_expr<T> >::type* = 0) const
{
return tools::equals_using_cmp<evaluated_t, T>::get(evaluate(), t);
}
template<class Op, class NData>
struct make_helper
{
typedef typename Derived::template type<Op, NData>::result type;
static type make(const NData& ndata)
{
return type(ndata);
}
};
};
// If your expression template is of the form
// template<class Operation, class Data>
// class my_expression ...
// then derived_wrapper<my_expression> is a valid argument for Derived in
// the expression class above.
template<template<class O, class D> class Derived>
struct derived_wrapper
{
template<class Operation, class Data>
struct type
{
typedef Derived<Operation, Data> result;
};
};
// If your expression template is of the form
// template<class Extra, class Opeartion, class Data>
// class my_expression2 ...
// where Extra is some extra information which should be passed on unchanged,
// then derived_wrapper2<my_expression2, Extra> is a valid argument for Derived
// in the expression class above.
template<template<class E, class O, class D> class Derived, class Extra>
struct derived_wrapper2
{
template<class Operation, class Data>
struct type
{
typedef Derived<Extra, Operation, Data> result;
};
};
// operators
namespace detail {
// These traits determine how arguments of an expression template are stored.
// E.g. (e1 + e2) yields a new expression template with a two-argument tuple
// as Data. If e1 is an immediate, then we want to (usually) store it by
// reference, to avoid copies. If not, we can just store by value (since
// copying e1 just copies the references anyway) and avoid indirection.
// (Similarly for e2.)
template<class Expr>
struct storage_traits
: mp::if_<
traits::is_immediate<Expr>,
typename traits::forwarding<Expr>::type,
Expr
> { };
// See tuple.h.
template<>
struct storage_traits<detail::UNUSED> {typedef detail::UNUSED type;};
template<class ev_t, class Op, class type>
struct nary_op_helper_step2
{
typedef typename ev_t::return_t Expr;
typedef typename Expr::template make_helper<Op, type> make_helper;
typedef typename make_helper::type return_t;
};
template<class Op, class type>
struct nary_op_helper_step2<rules::UNIMPLEMENTED, Op, type>
{
struct return_t { };
struct make_helper { };
};
// Helper to determine the return type of an expression, where Data is already
// the correct tuple type.
// The step1/step2 splitting above is necessary to avoid compiler errors in
// case there is not actually any rule.
template<class Op, class Data>
struct nary_op_helper
{
typedef typename mp::find_evaluation<Op, Data, true>::type ev_t;
typedef nary_op_helper_step2<ev_t, Op, Data> nohs2;
typedef typename nohs2::return_t return_t;
typedef typename nohs2::make_helper make_helper;
typedef traits::is_implemented<ev_t> cond;
typedef mp::enable_if<cond, return_t> enable;
};
template<class Op, class Maker>
struct nary_op_helper_maker
: nary_op_helper<Op, typename Maker::type>
{
typedef Maker maker;
};
#define FLINTXX_NARY_OP_HELPER_MACRO(arg) typename storage_traits< arg >::type
// nary_op_helper<Op, Arg1, Arg2, ...> invokes nary_op_helper with the correct
// tuple type as argument.
template<class Op, FLINTXX_MAKE_TUPLE_TEMPLATE_ARGS>
struct nary_op_helper2
: nary_op_helper_maker<Op, mp::make_tuple<
FLINTXX_MAKE_TUPLE_TYPES_APPLYMACRO(FLINTXX_NARY_OP_HELPER_MACRO) > >
{
typedef nary_op_helper2 noh2;
static typename noh2::return_t make(FLINTXX_MAKE_TUPLE_FUNC_ARGS)
{
return noh2::make_helper::make(noh2::maker::make(
FLINTXX_MAKE_TUPLE_FUNC_ARG_NAMES));
}
};
// Special casing for binary operators.
template<class Expr1, class Op, class Expr2>
struct binary_op_helper
: nary_op_helper2<Op, Expr1, Expr2>
{ };
// Special casing for unary operations.
template<class Op, class Expr>
struct unary_op_helper : nary_op_helper2<Op, Expr> { };
// For unary member operators, determining the return type the normal way can
// lead to cyclic dependencies. See FLINTXX_DEFINE_MEMBER_UNOP_RTYPE.
template<class Ret, class Op, class Expr>
struct unary_op_helper_with_rettype
{
typedef mp::make_tuple<typename storage_traits<Expr>::type> maker;
typedef typename Ret::template make_helper<
Op, typename maker::type>::type return_t;
};
// Common helper for implementing comparison operators.
template<class Expr1, class Expr2>
struct order_op_helper
{
typedef typename tools::evaluation_helper<Expr1>::type ev1_t;
typedef typename tools::evaluation_helper<Expr2>::type ev2_t;
typedef tools::symmetric_cmp<ev1_t, ev2_t> scmp;
typedef mp::enable_if<
mp::and_<
traits::is_implemented<scmp>,
mp::or_<
traits::is_expression<Expr1>,
traits::is_expression<Expr2>
>
>,
bool> enable;
static int get(const Expr1& e1, const Expr2& e2)
{
return scmp::get(tools::evaluation_helper<Expr1>::get(e1),
tools::evaluation_helper<Expr2>::get(e2));
}
};
} // detail
template<class Expr>
inline typename mp::enable_if<traits::is_expression<Expr>, std::ostream&>::type
operator<<(std::ostream& o, const Expr& e)
{
e.print(o);
return o;
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<traits::is_expression<Expr1>, bool>::type
operator==(const Expr1& e1, const Expr2& e2)
{
return e1.equals(e2);
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<mp::and_<
mp::not_<traits::is_expression<Expr1> >,
traits::is_expression<Expr2> >,
bool>::type
operator==(const Expr1& e1, const Expr2& e2)
{
return e2.equals(e1);
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<mp::or_<
traits::is_expression<Expr1>,
traits::is_expression<Expr2> >,
bool>::type
operator!=(const Expr1& e1, const Expr2& e2)
{
return !(e1 == e2);
}
template<class Expr1, class Expr2>
inline typename detail::order_op_helper<Expr1, Expr2>::enable::type
operator<(const Expr1& e1, const Expr2& e2)
{
return detail::order_op_helper<Expr1, Expr2>::get(e1, e2) < 0;
}
template<class Expr1, class Expr2>
inline typename detail::order_op_helper<Expr1, Expr2>::enable::type
operator<=(const Expr1& e1, const Expr2& e2)
{
return detail::order_op_helper<Expr1, Expr2>::get(e1, e2) <= 0;
}
template<class Expr1, class Expr2>
inline typename detail::order_op_helper<Expr1, Expr2>::enable::type
operator>(const Expr1& e1, const Expr2& e2)
{
return detail::order_op_helper<Expr1, Expr2>::get(e1, e2) > 0;
}
template<class Expr1, class Expr2>
inline typename detail::order_op_helper<Expr1, Expr2>::enable::type
operator>=(const Expr1& e1, const Expr2& e2)
{
return detail::order_op_helper<Expr1, Expr2>::get(e1, e2) >= 0;
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::plus, Expr2>::enable::type
operator+(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::plus, Expr2>::make(e1, e2);
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::minus, Expr2>::enable::type
operator-(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::minus, Expr2>::make(e1, e2);
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::times, Expr2>::enable::type
operator*(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::times, Expr2>::make(e1, e2);
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::divided_by, Expr2>::enable::type
operator/(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::divided_by, Expr2>::make(e1, e2);
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::modulo, Expr2>::enable::type
operator%(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::modulo, Expr2>::make(e1, e2);
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::binary_and, Expr2>::enable::type
operator&(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::binary_and, Expr2>::make(e1, e2);
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::binary_or, Expr2>::enable::type
operator|(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::binary_or, Expr2>::make(e1, e2);
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::binary_xor, Expr2>::enable::type
operator^(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::binary_xor, Expr2>::make(e1, e2);
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::shift, Expr2>::enable::type
operator<<(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::shift, Expr2>::make(e1, e2);
}
template<class Expr1, class Expr2>
inline typename detail::binary_op_helper<
Expr1, operations::shift, Expr2>::enable::type
operator>>(const Expr1& e1, const Expr2& e2)
{
return detail::binary_op_helper<Expr1, operations::shift, Expr2>::make(e1, -e2);
}
template<class Expr>
inline typename detail::unary_op_helper<operations::negate, Expr>::enable::type
operator-(const Expr& e)
{
return detail::unary_op_helper<operations::negate, Expr>::make(e);
}
template<class Expr>
inline typename detail::unary_op_helper<operations::complement, Expr>::enable::type
operator~(const Expr& e)
{
return detail::unary_op_helper<operations::complement, Expr>::make(e);
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<traits::is_immediate_expr<Expr1>, Expr1&>::type
operator+=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 + e2);
return e1;
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<traits::is_immediate_expr<Expr1>, Expr1&>::type
operator-=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 - e2);
return e1;
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<traits::is_immediate_expr<Expr1>, Expr1&>::type
operator*=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 * e2);
return e1;
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<traits::is_immediate_expr<Expr1>, Expr1&>::type
operator/=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 / e2);
return e1;
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<traits::is_immediate_expr<Expr1>, Expr1&>::type
operator%=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 % e2);
return e1;
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<traits::is_immediate_expr<Expr1>, Expr1&>::type
operator|=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 | e2);
return e1;
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<traits::is_immediate_expr<Expr1>, Expr1&>::type
operator&=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 & e2);
return e1;
}
template<class Expr1, class Expr2>
inline typename mp::enable_if<traits::is_immediate_expr<Expr1>, Expr1&>::type
operator^=(Expr1& e1, const Expr2& e2)
{
e1.set(e1 ^ e2);
return e1;
}
// c-style IO
template<class T>
typename mp::enable_if<traits::is_implemented<
rules::cprint<typename T::evaluated_t> >, int>::type
print(const T& t)
{
return t.print();
}
template<class T>
typename mp::enable_if<traits::is_implemented<
rules::cprint<typename T::evaluated_t> >, int>::type
print(FILE* f, const T& t)
{
return t.print(f);
}
template<class T, class U>
typename mp::enable_if<traits::is_implemented<
rules::print_pretty<typename T::evaluated_t> >, int>::type
print_pretty(const T& t, const U& extra)
{
return t.print_pretty(extra);
}
template<class T, class U>
typename mp::enable_if<traits::is_implemented<
rules::print_pretty<typename T::evaluated_t> >, int>::type
print_pretty(FILE* f, const T& t, const U& extra)
{
return t.print_pretty(extra, f);
}
template<class T>
typename mp::enable_if<traits::is_implemented<
rules::print_pretty<typename T::evaluated_t> >, int>::type
print_pretty(const T& t)
{
return t.print_pretty();
}
template<class T>
typename mp::enable_if<traits::is_implemented<
rules::print_pretty<typename T::evaluated_t> >, int>::type
print_pretty(FILE* f, const T& t)
{
return t.print_pretty(f);
}
template<class T>
typename mp::enable_if<traits::is_implemented<
rules::read<typename T::evaluated_t> >, int>::type
read(T& t)
{
return t.read();
}
template<class T>
typename mp::enable_if<traits::is_implemented<
rules::read<typename T::evaluated_t> >, int>::type
read(FILE* f, T& t)
{
return t.read(f);
}
// TODO move to std?
template<class Expr1, class Expr2>
inline typename mp::enable_if<typename traits::is_implemented<
rules::swap<Expr1, Expr2> > >::type swap(Expr1& e1, Expr2& e2)
{
rules::swap<Expr1, Expr2>::doit(e1, e2);
}
}
// TODO remove this?
#include "default_rules.h"
////////////////////////////////////////////////////////////////////////
// HELPER MACROS
////////////////////////////////////////////////////////////////////////
// To be called in any namespace
// Make the binary operation "name" available in current namespace
#define FLINT_DEFINE_BINOP_HERE(name) \
template<class T1, class T2> \
inline typename ::flint::detail::binary_op_helper<\
T1, ::flint::operations::name##_op, T2>::enable::type \
name(const T1& t1, const T2& t2) \
{ \
return ::flint::detail::binary_op_helper< \
T1, ::flint::operations::name##_op, T2>::make(t1, t2); \
}
// Make the unary operation "name" available in current namespace
#define FLINT_DEFINE_UNOP_HERE(name) \
template<class T1> \
inline typename ::flint::detail::unary_op_helper<\
::flint::operations::name##_op, T1>::enable::type \
name(const T1& t1) \
{ \
return ::flint::detail::unary_op_helper< ::flint::operations::name##_op, T1>::make(t1); \
}
// Make the threeary operation "name" available in current namespace
#define FLINT_DEFINE_THREEARY_HERE(name) \
template<class T1, class T2, class T3> \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3>::make(t1, t2, t3); \
}
// Make the threeary operation "name" available in current namespace,
// but with only two arguments, the second of which is of type type1 and
// defaults to val1, and the third argument always (implicitly) of type type2
// and value val2.
// The suggested usage of this macro is to first call FLINT_DEFINE_THREEARY_HERE,
// and then call FLINT_DEFINE_THREEARY_HERE_2DEFAULT. The effect will be an
// operation which can be invoked with 1, 2 or 3 arguments.
#define FLINT_DEFINE_THREEARY_HERE_2DEFAULT(name, type1, val1, type2, val2) \
template<class T1> \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, type1, type2 >::enable::type \
name(const T1& t1, type1 t2 = val1) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, type1, type2>::make(t1, t2, val2); \
}
// Make the fourary operation "name" available in current namespace
#define FLINT_DEFINE_FOURARY_HERE(name) \
template<class T1, class T2, class T3, class T4> \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3, T4>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3, const T4& t4) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3, T4>::make(t1, t2, t3, t4); \
}
// Make the fiveary operation "name" available in current namespace
#define FLINT_DEFINE_FIVEARY_HERE(name) \
template<class T1, class T2, class T3, class T4, class T5> \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3, T4, T5>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3, T4, T5>::make(t1, t2, t3, t4, t5); \
}
// Make the sixary operation "name" available in current namespace
#define FLINT_DEFINE_SIXARY_HERE(name) \
template<class T1, class T2, class T3, class T4, class T5, class T6> \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3, T4, T5, T6>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3, T4, T5, T6>::make(t1, t2, t3, t4, t5, t6); \
}
// Make the sevenary operation "name" available in current namespace
#define FLINT_DEFINE_SEVENARY_HERE(name) \
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7> \
inline typename ::flint::detail::nary_op_helper2<\
::flint::operations::name##_op, T1, T2, T3, T4, T5, T6, T7>::enable::type \
name(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6, const T7& t7) \
{ \
return ::flint::detail::nary_op_helper2< \
::flint::operations::name##_op, T1, T2, T3, T4, T5, T6, T7>::make(t1, t2, t3, t4, t5, t6, t7); \
}
// This set of macros should be called in namespace flint.
// Introduce a new binary operation called "name"
// NB: because of ADL bugs in g++ <= 4.4, the operation tag is called "name_op",
// whereas the function corresponding to it is just called "name"
#define FLINT_DEFINE_BINOP(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_BINOP_HERE(name)
// This macro can be used to conditionally enable a function, and is mostly
// used for forwarding.
// A typical usage is
// template<class T, class U>
// FLINT_BINOP_ENABLE_RETTYPE(myop, T, U) myop_other(const T& t, const U& u)
// {
// // perhaps something more interesting
// return myop(t, u);
// }
#define FLINT_BINOP_ENABLE_RETTYPE(name, T1, T2) \
typename detail::binary_op_helper<T1, operations::name##_op, T2>::enable::type
// Introduce a new unary operation called "name"
#define FLINT_DEFINE_UNOP(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_UNOP_HERE(name)
#define FLINT_UNOP_ENABLE_RETTYPE(name, T) \
typename detail::unary_op_helper<operations::name##_op, T>::return_t
// See FLINTXX_DEFINE_MEMBER_UNOP_RTYPE
#define FLINT_UNOP_BUILD_RETTYPE(name, rettype, T) \
typename detail::unary_op_helper_with_rettype<rettype, \
operations::name##_op, T>::return_t
#define FLINT_DEFINE_THREEARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_THREEARY_HERE(name)
#define FLINT_THREEARY_ENABLE_RETTYPE(name, T1, T2, T3) \
typename detail::nary_op_helper2<operations::name##_op, T1, T2, T3>::enable::type
#define FLINT_DEFINE_FOURARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_FOURARY_HERE(name)
#define FLINT_FOURARY_ENABLE_RETTYPE(name, T1, T2, T3, T4) \
typename detail::nary_op_helper2<operations::name##_op, T1, T2, T3, T4>::enable::type
#define FLINT_DEFINE_FIVEARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_FIVEARY_HERE(name)
#define FLINT_FIVEARY_ENABLE_RETTYPE(name, T1, T2, T3, T4, T5) \
typename detail::nary_op_helper2<operations::name##_op, T1, T2, T3, T4, T5>::enable::type
#define FLINT_DEFINE_SIXARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_SIXARY_HERE(name)
#define FLINT_DEFINE_SEVENARY(name) \
namespace operations { \
struct name##_op { }; \
} \
FLINT_DEFINE_SEVENARY_HERE(name)
#endif
|