/usr/include/libevocosm/function_optimizer.h is in libevocosm-dev 4.0.2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 | /*
Evocosm is a C++ framework for implementing evolutionary algorithms.
Copyright 2011 Scott Robert Ladd. All rights reserved.
Evocosm is user-supported open source software. Its continued development is dependent
on financial support from the community. You can provide funding by visiting the Evocosm
website at:
http://www.coyotegulch.com
You may license Evocosm in one of two fashions:
1) Simplified BSD License (FreeBSD License)
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
THIS SOFTWARE IS PROVIDED BY SCOTT ROBERT LADD ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SCOTT ROBERT LADD OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed
or implied, of Scott Robert Ladd.
2) Closed-Source Proprietary License
If your project is a closed-source or proprietary project, the Simplified BSD License may
not be appropriate or desirable. In such cases, contact the Evocosm copyright holder to
arrange your purchase of an appropriate license.
The author can be contacted at:
scott.ladd@coyotegulch.com
scott.ladd@gmail.com
http:www.coyotegulch.com
*/
#if !defined(EVOCOSM_FUNCTION_OPTIMIZER_H)
#define EVOCOSM_FUNCTION_OPTIMIZER_H
#include <vector>
#include <stdexcept>
#include <limits>
// other elements of Evocosm
#include "evocosm.h"
#include "evoreal.h"
// OpenMP support, if requested
#if defined(_OPENMP)
#include <omp.h>
#endif
namespace libevocosm
{
//! Global things used by all optimizer classes
/*!
I put all cross-class, shared items into a single base class; this
encapsulates global data, and also show why multiple inheritance
is a useful tool.
*/
class fopt_global
{
protected:
//! Definition of a function type
/*!
This is the type of function being optimized. <i><b>The inner nature
of this function is not defined by this optimizer.</b></i> A t_function
can be anything -- a simple numerical formula or a simulation. For
example: Consider a set of arguments that describe the shape of a wing,
and a function that tests shapes in a simulated wind tunnel, the
fitness representing "lift".
*/
typedef vector<double> t_function(vector<double> a_args);
//! Provides mutation and crossover services for doubles
static evoreal g_evoreal;
};
//! A potential solution to the problem at hand
/*!
To support a wide variety of applications, I defined a function solution
as a vector of doubles. This allows functions of any dimension to be
optimized (within platform limits, of course). Note that the solution
begins with an empty vector; this is because the number of elements and
their initialization is application specific. Initialization of the genes
takes place in the constructor for function_optimizer through a pointer
to a user-supplied function.
*/
class function_solution : public organism< vector<double> >, protected fopt_global
{
public:
/*!
Value is the actual computed value of this solution, which may or may not
correspond directly to fitness. For example, when minimizing a function,
the lowest value may correspond to the highest fitness. Generally, this is
a display property.
*/
double value;
protected:
/*! used to cast base class pointer to concrete class */
virtual void child_copy(const organism & a_source)
{
value = dynamic_cast<const function_solution &>(a_source).value;
}
private:
double m_minarg;
double m_maxarg;
double m_extent;
public:
//! Default contructor
/*!
Creates an empty solution.
*/
function_solution()
: organism< vector<double> >(),
value(0.0),
m_minarg(-1.0),
m_maxarg(1.0),
m_extent(2.0)
{
// nada
}
//! Creation constructor
/*!
Creates a new solution with an empty vector.
*/
function_solution(int a_nargs, double a_minarg, double a_maxarg)
: organism< vector<double> >(), value(0.0)
{
double base;
double extent;
if (a_maxarg < a_minarg)
{
double temp = a_maxarg;
a_maxarg = a_minarg;
a_minarg = a_maxarg;
}
m_minarg = a_minarg;
m_maxarg = a_maxarg;
m_extent = a_maxarg - a_minarg;
// values fall in the range [-1,1]
for (size_t n = 0; n < a_nargs; ++n)
genes.push_back(g_random.get_real() * m_extent + a_minarg);
}
//! Construct from raw genes
/*!
Constructs a new function solution from a set of genes
*/
function_solution(const vector<double> & a_source)
: organism< vector<double> >(a_source), value(0.0)
{
// nada
}
//! Construct from base class
/*!
Constructs a function solution from a base-class object.
\param a_source - The source object
*/
function_solution(const organism< vector<double> > & a_source)
: organism< vector<double> >(a_source), value(0.0)
{
// nada
}
//! Copy constructor
/*!
Duplicates an existing object.
\param a_source - The source object
*/
function_solution(const function_solution & a_source)
: organism< vector<double> >(a_source),
value(a_source.value),
m_minarg(a_source.m_minarg),
m_maxarg(a_source.m_maxarg),
m_extent(a_source.m_extent)
{
// nada
}
//! Virtual destructor
/*!
Satisfies the requirements of the base class; does nothing
*/
virtual ~function_solution()
{
// nada
}
//! Assignment operator
/*!
Assigns the state of one solution to another.
\param a_source - The source object
\return A reference to <i>this</i>
*/
function_solution & operator = (const function_solution & a_source)
{
organism< vector<double> >::operator = (a_source);
value = a_source.value;
m_minarg = a_source.m_minarg;
m_maxarg = a_source.m_maxarg;
m_extent = a_source.m_extent;
return *this;
}
//! Comparison operator for algorithms
/*!
Returns true if the target object is greater than a_source. While the
operator may be "less than", what it really meands for algorithms is
"comes before" -- and I want the highest fitness to come first.
\param a_right - Right hand argument for less than operator
\return <b>true</b> if this organismsfitness if greater than <code>a_right.fitness</code>; <b>false</b> otherwise
*/
virtual bool operator < (const organism< vector<double> > & a_right) const
{
return (fitness > a_right.fitness);
}
};
//! Mutates solutions
/*!
Implements chance-based mutation of solutions.
*/
class function_mutator : public mutator<function_solution>, protected fopt_global
{
public:
//! Creation constructor
/*!
Creates a new mutator with a given mutation rate.
*/
function_mutator(double a_mutation_rate)
: m_mutation_rate(a_mutation_rate)
{
// adjust mutation rate if necessary
if (m_mutation_rate > 1.0)
m_mutation_rate = 1.0;
else if (m_mutation_rate < 0.0)
m_mutation_rate = 0.0;
}
//! Copy constructor
/*!
Duplicates an existing object.
\param a_source - The source object
*/
function_mutator(const function_mutator & a_source)
: m_mutation_rate(a_source.m_mutation_rate)
{
// nada
}
//! Virtual destructor
/*!
Satisfies the requirements of the base class; does nothing at this time.
*/
virtual ~function_mutator()
{
// nada
}
//! Assignment operator
/*!
Assigns the state of one object to another.
\param a_source - The source object
\return A reference to <i>this</i>
*/
function_mutator & operator = (const function_mutator & a_source)
{
m_mutation_rate = a_source.m_mutation_rate;
return *this;
}
//! Gets the mutation rate
/*!
Returns the mutation rate set for this mutator.
\return Mutation rate
*/
double mutation_rate() const
{
return m_mutation_rate;
}
//! Performs mutations
/*!
Mutates a solution using the facilities provided by g_evoreal.
\param a_population - Solutions to be mutated
*/
void mutate(vector<function_solution> & a_population);
private:
// rate of mutation
double m_mutation_rate;
};
//! Implements reproduction
/*!
Handles reproduction for solutions.
*/
class function_reproducer : public reproducer<function_solution>, protected fopt_global
{
public:
//! Creation constructor
/*!
Creates a new reproducer with a given crossover rate.
*/
function_reproducer(double p_crossover_rate = 1.0)
: m_crossover_rate(p_crossover_rate)
{
// adjust crossover rate if necessary
if (m_crossover_rate > 1.0)
m_crossover_rate = 1.0;
else if (m_crossover_rate < 0.0)
m_crossover_rate = 0.0;
}
//! Copy constructor
/*!
Duplicates an existing object.
\param a_source - The source object
*/
function_reproducer(const function_reproducer & a_source)
: m_crossover_rate(a_source.m_crossover_rate)
{
// nada
}
//! Virtual destructor
/*!
Satisfies the requirements of the base class; does nothing at this time.
*/
virtual ~function_reproducer()
{
// nada
}
//! Assignment operator
/*!
Assigns the state of one object to another.
\param a_source - The source object
\return A reference to <i>this</i>
*/
function_reproducer & operator = (const function_reproducer & a_source)
{
m_crossover_rate = a_source.m_crossover_rate;
return *this;
}
//! Gets the crossover rate
/*!
Returns the crossover rate set for this reproducer.
\return Crossover rate
*/
double crossover_rate() const
{
return m_crossover_rate;
}
//! Reproduction for solutions
/*!
Breeds new solutions, by cloning or the combination of elements from parent organisms. By
default, the crossover rate is 1.0 (100%), meaning that all children stem from crossover
between two parents. The crossover is implemented on a argument-by-argument basis; in other
words, crossover occurs between corresponding elements of the parent solutions.
\param a_population - A population of solutions
\param p_limit - Maximum number of children
\return A vector containing new "child" chromosomes
*/
virtual vector<function_solution> breed(const vector<function_solution> & a_population, size_t p_limit);
private:
// crossover chance
double m_crossover_rate;
};
//! Defines the test for a population of solutions
/*!
A "fitness" landscape defines the environment in which an organism
competes for survival. In the case of function optimization, the
"test" is (obviously!) a function.
*/
class function_landscape : public landscape<function_solution>, protected fopt_global
{
public:
//! Creation constructor
/*!
Creates a new landscape with a given fitness function.
\param a_function function to be tested
\param a_listener a listener for events during testing
*/
function_landscape(t_function * a_function, listener<function_solution> & a_listener)
: landscape<function_solution>(a_listener),
m_function(a_function)
{
// nada
}
//! Copy constructor
function_landscape(const function_landscape & a_source)
: landscape<function_solution>(a_source),
m_function(a_source.m_function)
{
// nada
}
//! Assignment
function_landscape & operator = (const function_landscape & a_source)
{
landscape<function_solution>::operator = (a_source);
m_function = a_source.m_function;
return *this;
}
//! Virtual destructor
/*!
Satisfies the requirements of the base class; does nothing at this time.
*/
~function_landscape()
{
// nada
}
//! Performs fitness testing
/*!
Tests a single chromosome for fitness by calling the fitness function provided
in the constructor.
\param a_organism the organism to be tested by the landscape.
\param a_verbose should this test produce lots of output?
\return Computed fitness for this organism
*/
virtual double test(function_solution & a_organism, bool a_verbose = false) const
{
vector<double> z = m_function(a_organism.genes);
a_organism.value = z[0];
a_organism.fitness = z[1];
return a_organism.fitness;
}
private:
// fitness function pointer
t_function * m_function;
};
//! Reports the state of a population of solutions
/*!
A simple analyzer for diaplying information about the populations
as it evolves.
*/
class function_analyzer : public analyzer<function_solution>
{
private:
function_solution m_prev_best;
size_t m_count;
public:
//! Constructor
/*!
Creates a new analyzer object
\param a_listener - a listener for events
*/
function_analyzer(listener<function_solution> & a_listener, size_t max_iterations)
: analyzer<function_solution>(a_listener, max_iterations),
m_prev_best(function_solution()),
m_count(0)
{
// nada
}
//! Reports on a population
/*!
The report method can do almost anything. In most case, it will display
the "best" chromosome, draw a progress graph, or notify the user that
another generation has passed. The return value tells an evocosm whether
to continue evolution (changes in the population) or not.
\param a_population - A population of organisms
\param a_iteration - Iteration count for this report
\param a_fitness - Assigned the fitness value; implementation-defined
\return <b>true</b> if the evocosm should evolve the population more; <b>false</b> if no evolution is required.
*/
virtual bool analyze(const vector<function_solution> & a_population,
size_t a_iteration,
double & a_fitness);
};
//! An listener implementation that ignores all events
/*!
This listener displays information about events to stdout
(standard ouput).
*/
class function_listener : public null_listener<function_solution>
{
public:
//! Ping that a generation begins
/*!
Ping that processing a generation begins.
\param a_iteration One-based number of the generation begun
*/
virtual void ping_generation_begin(size_t a_iteration);
//! Ping that a generation ends
/*!
Ping that processing a generation has ended.
\param a_population population for which processing has ended
\param a_iteration One-based number of the generation ended
*/
virtual void ping_generation_end(const vector<function_solution> & a_population, size_t a_iteration);
};
//! A generic function optimizer
/*!
Using instances of the other classes, this class binds together the pieces to
create a complete function optimizer. A user of this class defines two functions
-- a solution initializer and a fitness test -- that define the target problem.
*/
class function_optimizer : protected fopt_global, protected function_listener
{
private:
// objects that define the characteristics of the genetic algorithm
vector<function_solution> m_population;
function_landscape m_landscape;
function_mutator m_mutator;
function_reproducer m_reproducer;
linear_norm_scaler<function_solution> m_scaler;
elitism_selector<function_solution> m_selector;
function_analyzer m_analyzer;
// the evocosm binds it all together
evocosm<function_solution> * m_evocosm;
// number of iterations to run
const size_t m_iterations;
public:
//! Constructor
/*!
Creates a new function_optimizer with the given set of parameters.
\param a_function - Address of the function to be optimized.
\param a_nargs - number of arguments per solution
\param a_minarg - minimum argument value
\param a_maxarg - maximum argument value
\param a_norgs - The size of the solution population.
\param a_mutation_rate - Mutation rate in the range [0,1].
\param a_iterations - Number of iterations to perform when doing a run.
*/
function_optimizer(t_function * a_function,
size_t a_nargs,
double a_minarg,
double a_maxarg,
size_t a_norgs,
double a_mutation_rate,
size_t a_iterations);
//! Destructor
/*!
Cleans up resources by removing allocated objects.
*/
virtual ~function_optimizer();
//! Performs optimization
/*!
This is where the work gets done; run iterates the number of times specificed when creating
this function_optimizer, reporting via a function_analyzer object on the progress of
optimization.
*/
void run();
};
};
#endif
|