This file is indexed.

/usr/include/dune/pdelab/multistep/cache.hh is in libdune-pdelab-dev 2.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
// -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=8 sw=2 sts=2:

#ifndef DUNE_PDELAB_MULTISTEP_CACHE_HH
#define DUNE_PDELAB_MULTISTEP_CACHE_HH

#include <cstddef>
#include <map>
#include <utility>
#include <vector>

#include <dune/common/exceptions.hh>
#include <dune/common/shared_ptr.hh>

namespace Dune {
  namespace PDELab {

    //! \addtogroup MultiStepMethods
    //! \{

    //! Base exception for cache related errors
    class CacheError : public Exception {};

    //! Exception thrown when a requested item is not in the cache
    class NotInCache : public CacheError {};

    //! Exception thrown when a stored item is already in the cache
    class AlreadyInCache : public CacheError {};

    //! Policy class for the MultiStepCache
    /**
     * \tparam Step Type used for step number.  May be signed or unsigned
     *              integral.  If it is unsigned, no negative step number may
     *              occur, ever.
     * \tparam Time Type used for temporal values.  Should be floating-point.
     *
     * This is a virtual base class.  However, in addition to being a base
     * class it can also be used as-is, and will provide safe behaviour in
     * this case: cache everything, but don't assume any affine behaviour and
     * cache-items will be evicted once they are older than the number of
     * steps given in the contructor.
     *
     * \nosubgrouping
     */
    template<class Step = int, class Time = double>
    class MultiStepCachePolicy {
    protected:
      //! The number of steps in the scheme, set by preStep().
      /**
       * This means to compute value \f$u_n\f$, the scheme will need the next
       * \c stepsOfScheme old values, back to (and including)
       * \f$u_{n-\text{\tt stepsOfScheme}}\f$.
       */
      Step stepsOfScheme;
      //! The number of the step set via preStep().
      /**
       * After preStep(), this denotes the number of the step currently being
       * computed.  After postStep(), this denotes the number of the step that
       * has just been computed.
       */
      Step currentStep;
      //! The end-time of the step set via preStep().
      /**
       * After preStep(), this denotes the end-time of the step currently
       * being computed.  After postStep(), this denotes the end-time of the
       * step that has just been computed.
       */
      Time endTime;
      //! Time step size
      /**
       * After preStep(), this denotes the size of the step currently being
       * computed.  After postStep(), this denotes the size of the step that
       * has just been computed.
       */
      Time dt;

    public:
      //! any virtual base needs a virtual destructor
      virtual ~MultiStepCachePolicy() {}

      //! \name methods to determine what to cache
      //! \{

      //! whether to cache residual evaluations
      /** Returns \c true by default */
      virtual bool cacheResidualValue(std::size_t order, Step step) const
      { return true; }
      //! whether to cache jacobians (only relevant for affine operators)
      /** Returns \c true by default */
      virtual bool cacheJacobian(std::size_t order, Step step) const
      { return true; }
      //! whether to cache zero-residuals (only relevant for affine operators)
      /** Returns \c true by default */
      virtual bool cacheZeroResidual(std::size_t order, Step step) const
      { return true; }
      //! whether to cache composed jacobians (only relevant for affine operators)
      /** Returns \c true by default */
      virtual bool cacheComposedJacobian(Step step) const
      { return true; }

      //! \}

      //! \name methods to determine properties of the operators
      //! \{

      //! Whether the operator is affine
      /** Returns \c false by default */
      virtual bool isAffine(std::size_t order, Step step) const
      { return false; }
      //! Whether the composed operator is affine
      /** Returns \c false by default */
      virtual bool isComposedAffine(Step step) const
      { return false; }
      //! Whether the operator has purely linear alpha_*() methods
      /** Returns \c false by default */
      virtual bool hasPureLinearAlpha(std::size_t order, Step step) const
      { return false; }
      //! Whether a jacobian can be reused
      /** Returns \c false by default */
      virtual bool canReuseJacobian(std::size_t order,
                                    Step requested, Step available) const
      { return false; }
      //! Whether a zero-residual can be reused
      /** Returns \c false by default */
      virtual bool canReuseZeroResidual(std::size_t order,
                                        Step requested, Step available) const
      { return false; }
      //! Whether a composed jacobian can be reused
      /** Returns \c false by default */
      virtual bool canReuseComposedJacobian(Step requested,
                                            Step available) const
      { return false; }

      //! \}

      //! \name methods for pre-/post-processing
      //! \{

      //! method called before starting to compute a step
      /**
       * \param step           Number of the step that will be computed,
       *                       i.e. when \f$u_n\f$ is computed, then
       *                       \f$n=\f$\c step.
       * \param stepsOfScheme_ Number of steps in the scheme: the oldest
       *                       required value is \f$u_{\text{\tt
       *                       step}-\text{\tt stepsOfScheme}}\f$.
       * \param endTime_       \f$t_n\f$, the time at step \c step.
       * \param dt_            Time step size, i.e. \f$t_n-t_{n-1}\f$.
       *
       * The default implementation saves the parameters \c step, \c
       * stepsOfScheme_, \c endTime_ and \c dt_ in the protected member
       * variables \c currentStep, \c stepsOfScheme, \c endTime and \c dt,
       * respectively.
       */
      virtual void preStep(Step step, Step stepsOfScheme_,
                           Time endTime_, Time dt_)
      {
        currentStep = step;
        stepsOfScheme = stepsOfScheme_;
        endTime = endTime_;
        dt = dt_;
      }
      //! called after the new values for a time step have been computed
      /** does nothing by default. */
      virtual void postStep() { }

      //! \}

      //! \name methods to determine stale items
      //! \{

      //! determine whether a residual value can be removed
      virtual bool canEvictResidualValue(std::size_t order,
                                         Step step) const
      { return step + stepsOfScheme < currentStep; }
      //! determine whether a Jacobian can be removed
      virtual bool canEvictJacobian(std::size_t order, Step step) const
      { return step + stepsOfScheme < currentStep; }
      //! determine whether a zero-residual can be removed
      virtual bool canEvictZeroResidual(std::size_t order,
                                        Step step) const
      { return step + stepsOfScheme < currentStep; }
      //! determine whether a vector of unknowns can be removed
      virtual bool canEvictUnknowns(Step step) const
      { return step + stepsOfScheme < currentStep; }
      //! determine whether a composed Jacobian can be removed
      virtual bool canEvictComposedJacobian(Step step) const
      { return step + stepsOfScheme < currentStep; }
    };

    //! Cache for the CachedMultiStepGridOperatorSpace
    /**
     * \tparam VectorU Type of vectors for the unknowns.
     * \tparam VectorV Type of vectors for the residuals.
     * \tparam Matrix  Type of the Jacobians.
     * \tparam Step    Type of the step counters (should be integral).
     * \tparam Time    Type of the temporal values (should be floating-point).
     *
     * The MultiStepCache caches four kinds of data:
     * \li Residual values for a given time step and vector of unknowns:
     *     \f$r_j(t_n,u_n)\f$.  This is useful even for non-linear problems.
     * \li Jacobian matrices of the local operators \f$J(r_j|_{t_n})\f$.  This
     *     is mostly useful for affine operators when the Jacobians can be
     *     reused.
     * \li Zero-residuals of the local operators \f$r_j(t_n,0)\f$.  This is
     *     mostly useful for affine operators when the zero-residuals can be
     *     reused.
     * \li Jacobian matrices of the composed system
     *     \f$\sum_{j=0}^p\frac{\alpha{0j}}{(\Delta t)^j}J(r_j|_{t^n})\f$.
     *     These are the matrices which are solved by the solver in the end.
     *     This is mostly useful for affine operators when the Jacobians can be
     *     reused.
     *
     * In addition, there is one item which is store in the cache just like
     * the cached items, but is present mostly because it is a convenient way
     * for the user code to provide an manage that information:
     * \li The old values of the unknown vectors \f$u_n\f$.  This is not
     *     really a cache but a way for the user code to provide those values
     *     to the GridOperatorSpace.
     *
     * It is always valid for the cache implementation to silently refuse to
     * store a value (except for the vectors of unknowns).  The grid operator
     * space must never expect to be able to store a value and immediately be
     * able to extract it again.  The grid operator space must always be
     * prepared to recompute a value that cannot be extracted from the cache,
     * and should try to store that value in the cache afterwards.
     *
     * \note The cache keeps pointers to the values it stores.  The user code
     *       must make sure that any value stored in the cache is not later
     *       modified, any such modification results in undefined behaviour.
     */
    template<class VectorU, class VectorV, class Matrix,
             class Step = int, class Time = double>
    struct MultiStepCache {
      typedef MultiStepCachePolicy<Step, Time> Policy;

    private:
      typedef std::map<Step, shared_ptr<const Matrix> > MatrixMap;
      typedef typename MatrixMap::const_iterator MatrixIterator;
      typedef std::map<Step, shared_ptr<const VectorV> > ResidualMap;
      typedef typename ResidualMap::const_iterator ResidualIterator;
      typedef std::map<Step, shared_ptr<const VectorU> > UnknownMap;
      typedef typename UnknownMap::const_iterator UnknownIterator;

      // non-linear caching across time steps
      std::vector<ResidualMap> residualValues;

      // affine operators
      std::vector<MatrixMap> jacobians;
      std::vector<ResidualMap> zeroResiduals;

      // composed jacobians
      MatrixMap composedJacobians;

      // old values of the unknowns
      UnknownMap unknowns;

      // policy object
      shared_ptr<Policy> policy;

    public:

      //! \name construction and policy management
      //! \{

      MultiStepCache(const shared_ptr<Policy> &policy_ =
                           shared_ptr<Policy>(new Policy)) :
        policy(policy_)
      {
        if(!policy)
          DUNE_THROW(CacheError,
                     "MultiStepCache constructed with policy == NULL");
      }

      shared_ptr<Policy> getPolicy()
      { return policy; }
      shared_ptr<const Policy> getPolicy() const
      { return policy; }
      void setPolicy(const shared_ptr<Policy>& policy_)
      {
        if(!policy_)
          DUNE_THROW(CacheError, "MultiStepCache::setPolicy(): attempt to set "
                     "policy == NULL");
        policy = policy_;
      }

      //! \}

      //! \name methods for non

      //! \name non-linear caching across time steps
      //! \{

      //! get residual value from the cache
      /**
       * \param order Extract the residual value of the operator for the
       *              order'th temporal derivative.
       * \param step  Step for which to extract the residual value.
       *
       * \returns A shared pointer to the residual value vector.
       *
       * \throw NotInCache if the requested residual value is not in the
       *                   cache.
       */
      shared_ptr<const VectorV>
      getResidualValue(std::size_t order, Step step) const {
        if(order < residualValues.size()) {
          ResidualIterator it = residualValues[order].find(step);
          if(it != residualValues[order].end())
            return it->second;
        }
        DUNE_THROW(NotInCache, "MultiStepCache::getResidualValue(): The "
                   "requested residual value "
                   "r_" << order << "(t_" << step << ",u_" << step << ") is "
                   "not in the cache");
      }
      //! store a residual value in the cache
      /**
       * \param order         Store the residual value of the operator for the
       *                      order'th temporal derivative.
       * \param step          Step for which to store the residual value.
       * \param residualValue Pointer to the residual value to store.
       *
       * \throw AlreadyInCache if the cache already contains a residual value
       *                       for the given order and step.
       */
      void setResidualValue(std::size_t order, Step step,
                            const shared_ptr<const VectorV> &residualValue)
      {
        if(!policy->cacheResidualValue(order, step))
          return;
        if(order >= residualValues.size())
          residualValues.resize(order+1);
        if(!residualValues[order].insert(std::make_pair(step, residualValue))
           .second)
          DUNE_THROW(AlreadyInCache, "Residual value"
                     "r_" << order << "(t_" << step << ", u_" << step << ") "
                     "is already in the cache!");
      }

      //! \}

      //! \name methods for the Jacobians of affine operators
      //! \{

      //! get a Jacobian from the cache
      /**
       * \param order Extract the Jacobian matrix of the operator for the
       *              order'th temporal derivative.
       * \param step  Step for which to extract the jacobian.
       *
       * \returns A shared pointer to the Jacobian matrix.
       *
       * \throw NotInCache if the requested Jacobian is not in the cache.
       *
       * \note This function will attempt to copy the Jacobian from other
       *       Jacobians of the same order.  As a consequence, this method
       *       only works on the mutable cache.
       */
      shared_ptr<const Matrix>
      getJacobian(std::size_t order, Step step) {
        if(order < jacobians.size()) {
          MatrixIterator it = jacobians[order].find(step);
          const MatrixIterator &end = jacobians[order].end();
          if(it != end)
            return it->second;

          // try to copy from another step
          for(it = jacobians[order].begin(); it != end; ++it)
            if(policy->canReuseJacobian(order, step, it->first))
              // assign and return value
              return jacobians[order][step] = it->second;
        }
        DUNE_THROW(NotInCache, "MultiStepCache::getJacobian(): The requested "
                   "Jacobian J(r_" << order << "|_t_" << step << ") is not in "
                   "the cache");
      }
      //! store a Jacobian in the cache
      /**
       * \param order    Store the Jacobian of the operator for the order'th
       *                 temporal derivative.
       * \param step     Step for which to store the jacobian.
       * \param jacobian Pointer to the Jacobian to store.
       *
       * \throw AlreadyInCache if the cache already contains a Jacobian for
       *                       the given order and step.
       */
      void setJacobian(std::size_t order, Step step,
                       const shared_ptr<const Matrix> &jacobian)
      {
        if(!policy->cacheJacobian(order, step))
          return;
        if(order >= jacobians.size())
          jacobians.resize(order+1);
        if(!jacobians[order].insert(std::make_pair(step, jacobian)).second)
          DUNE_THROW(AlreadyInCache, "MultiStepCache::setJacobian(): Jacobian "
                     "J(r_" << order << "|_t_" << step << ") is already in "
                     "the cache!");
      }

      //! \}

      //! \name methods for the zero-residual of affine operators
      //! \{

      //! get zero-residual from the cache
      /**
       * \param order Extract the zero-residual of the operator for the
       *              order'th temporal derivative.
       * \param step  Step for which to extract the zero-residual.
       *
       * \returns A shared pointer to the zero-residual vector.
       *
       * \throw NotInCache if the requested zero-residual is not in the cache.
       *
       * \note This function will attempt to copy the zero-residual from other
       *       zero-residuals of the same order.  As a consequence, this
       *       method only works on the mutable cache.
       */
      shared_ptr<const VectorV>
      getZeroResidual(std::size_t order, Step step) const {
        if(order < zeroResiduals.size()) {
          ResidualIterator it = zeroResiduals[order].find(step);
          const ResidualIterator &end = zeroResiduals[order].end();
          if(it != end)
            return it->second;

          // try to copy from another step
          for(it = zeroResiduals[order].begin(); it != end; ++it)
            if(policy->canReuseZeroResidual(order, step, it->first))
              // assign and return value
              return zeroResiduals[order][step] = it->second;
        }
        DUNE_THROW(NotInCache, "MultiStepCache::getZeroResidual(): The "
                   "requested zero-residual "
                   "r_" << order << "(t_" << step << ",0) is not in the "
                   "cache");
      }
      //! store a zero-residual in the cache
      /**
       * \param order        Store the zero-residual of the operator for the
       *                     order'th temporal derivative.
       * \param step         Step for which to store the zero-residual.
       * \param zeroResidual Pointer to the zero-residual to store.
       *
       * \throw AlreadyInCache if the cache already contains a zero-residual
       *                       for the given order and step.
       */
      void setZeroResidual(std::size_t order, Step step,
                           const shared_ptr<const VectorV> &zeroResidual)
      {
        if(!policy->cacheZeroResidual(order, step))
          return;
        if(order >= zeroResiduals.size())
          zeroResiduals.resize(order+1);
        if(!zeroResiduals[order].insert(std::make_pair(step, zeroResidual))
           .second)
          DUNE_THROW(AlreadyInCache, "Zero-residual "
                     "r_" << order << "(t_" << step << ", 0) is already in "
                     "the cache!");
      }

      //! \}

      //! \name methods for the composed Jacobian of affine operators
      //! \{

      //! get a composed Jacobian from the cache
      /**
       * \param step Step for which to extract the jacobian.
       *
       * \returns A shared pointer to the Jacobian matrix.
       *
       * \throw NotInCache if the requested composed Jacobian is not in the
       *                   cache.
       *
       * \note This function will attempt to copy the composed Jacobian from
       *       composed Jacobians of other times steps.  As a consequence,
       *       this method only works on the mutable cache.
       */
      shared_ptr<const Matrix>
      getComposedJacobian(Step step) {
        MatrixIterator it = composedJacobians.find(step);
        const MatrixIterator &end = composedJacobians.end();
        if(it != end)
          return it->second;

        // try to copy from another step
        for(it = composedJacobians.begin(); it != end; ++it)
          if(policy->canReuseComposedJacobian(step, it->first))
            // assign and return value
            return composedJacobians[step] = it->second;

        DUNE_THROW(NotInCache, "MultiStepCache::getComposedJacobian(): The "
                   "requested composed Jacobian for step " << step << " is "
                   "not in the cache");
      }
      //! store a composed Jacobian in the cache
      /**
       * \param step     Step for which to store the composed Jacobian.
       * \param jacobian Pointer to the composed Jacobian to store.
       *
       * \throw AlreadyInCache if the cache already contains a composed
       *                       Jacobian for the given step.
       */
      void setComposedJacobian(Step step,
                               const shared_ptr<const Matrix> &jacobian)
      {
        if(!policy->cacheComposedJacobian(step))
          return;
        if(!composedJacobians.insert(std::make_pair(step, jacobian)).second)
          DUNE_THROW(AlreadyInCache, "MultiStepCache::setComposedJacobian(): "
                     "Composed Jacobian for time step " << step << " is "
                     "already in the cache!");
      }

      //! \}

      //! \name methods to access old values of the unknowns
      //! \{

      //! get vector of unknowns from the cache
      /**
       * \param step Step for which to extract the vector of unknowns.
       *
       * \returns A shared pointer to the vector of unknowns.
       *
       * \throw NotInCache if the cache does not contain a vector of unknowns
       *                   for the given step.
       */
      shared_ptr<const VectorU>
      getUnknowns(Step step) const {
        UnknownIterator it = unknowns.find(step);
        if(it != unknowns.end())
          return it->second;
        DUNE_THROW(NotInCache, "Unknowns u_" << step << " missing in the "
                   "cache!");
      }
      //! store a vector of unknowns  in the cache
      /**
       * \param step      Step for which to store the vector of unknowns.
       * \param unknowns_ Pointer to the unknowns to store.
       *
       * \throw AlreadyInCache if the cache already contains a vector of
       *                       unknowns for the given order and step.
       */
      void setUnknowns(Step step, const shared_ptr<const VectorU> &unknowns_) {
        if(unknowns[step])
          DUNE_THROW(AlreadyInCache, "Unknowns u_" << step << " are already "
                     "in the cache!");
        unknowns[step] = unknowns_;
      }

      //! \}

      //! \name methods to flush the cache
      //! \{

      //! Flush all cached values
      /**
       * This is useful for instance after adaption.  It is equivalent to
       * recreating the cache.
       */
      void flushAll() {
        residualValues.clear();
        jacobians.clear();
        zeroResiduals.clear();
        composedJacobians.clear();
        unknowns.clear();
      }

      //! \}

      //! \name methods for pre-/post-processing

      //! Do some housekeeping before computing a time-step
      /**
       * The method first calls preStep on the policy object, passing it the
       * parameters:
       *
       * \param step          Number of the step that will be computed,
       *                      i.e. when \f$u_n\f$ is computed, then
       *                      \f$n=\f$\c step.
       * \param stepsOfScheme Number of steps in the scheme: the oldest
       *                      required value is \f$u_{\text{\tt
       *                      step}-\text{\tt stepsOfScheme}}\f$.
       * \param endTime       \f$t_n\f$, the time at step \c step.
       * \param dt            Time step size, i.e. \f$t_n-t_{n-1}\f$.
       *
       * It the iterates over each cache item and remove it, if the policy
       * allows that.
       */
      void preStep(Step step, Step stepsOfScheme, Time endTime, Time dt) {
        policy->preStep(step, stepsOfScheme, endTime, dt);

        // residual values
        for(std::size_t order = 0; order < residualValues.size(); ++order) {
          const ResidualIterator end = residualValues[order].end();
          ResidualIterator it = residualValues[order].begin();
          while(it != end)
            if(policy->canEvictResidualValue(order, it->first))
              residualValues[order].erase(it++);
            else
              ++it;
        }

        // Jacobians
        for(std::size_t order = 0; order < jacobians.size(); ++order) {
          const MatrixIterator end = jacobians[order].end();
          MatrixIterator it = jacobians[order].begin();
          while(it != end)
            if(policy->canEvictJacobian(order, it->first))
              jacobians[order].erase(it++);
            else
              ++it;
        }

        // zero-residual
        for(std::size_t order = 0; order < zeroResiduals.size(); ++order) {
          const ResidualIterator end = zeroResiduals[order].end();
          ResidualIterator it = zeroResiduals[order].begin();
          while(it != end)
            if(policy->canEvictZeroResidual(order, it->first))
              zeroResiduals[order].erase(it++);
            else
              ++it;
        }

        // composed Jacobians
        {
          const MatrixIterator end = composedJacobians.end();
          MatrixIterator it = composedJacobians.begin();
          while(it != end)
            if(policy->canEvictComposedJacobian(it->first))
              composedJacobians.erase(it++);
            else
              ++it;
        }

        // unknowns
        {
          const UnknownIterator end = unknowns.end();
          UnknownIterator it = unknowns.begin();
          while(it != end)
            if(policy->canEvictUnknowns(it->first))
              unknowns.erase(it++);
            else
              ++it;
        }
      }

      //! Do some housekeeping after computing a time-step
      /**
       * This just calls postStep() on the policy object.
       */
      void postStep() { policy->postStep(); }

      //! \}

    };

    //! \} group MultiStepMethods
  } // namespace PDELab
} // namespace Dune

#endif // DUNE_PDELAB_MULTISTEP_CACHE_HH