/usr/include/dune/pdelab/linearsolver/stationarymatrix.hh is in libdune-pdelab-dev 2.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | // -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=8 sw=2 sts=2:
#ifndef DUNE_PDELAB_LINEARPROBLEM_STATIONARYMATRIX_HH
#define DUNE_PDELAB_LINEARPROBLEM_STATIONARYMATRIX_HH
#include <iostream>
#include <ostream>
#include <dune/common/shared_ptr.hh>
#include <dune/common/timer.hh>
#include <dune/pdelab/backend/backendselector.hh>
namespace Dune {
namespace PDELab {
//! A class for solving linear problems with stationary matrices.
/**
* In apply() it first check whether the marix has already been assembled.
* If it hasn't,it assembles the matrix and stores it for future
* applications. Then it computes the right hand side and solves the
* problem.
*
* \tparam GOS GridOperatorSpace to use.
* \tparam SB Solver backend.
* \tparam Coeff Type of the matrix/vector entries
*/
template<class GOS, class SB, class Coeff>
class StationaryMatrixLinearSolver
{
typedef typename GOS::template MatrixContainer<Coeff>::Type Matrix;
typedef typename Dune::PDELab::BackendVectorSelector
<typename GOS::Traits::TrialGridFunctionSpace, Coeff>::Type VectorU;
typedef typename Dune::PDELab::BackendVectorSelector
<typename GOS::Traits::TestGridFunctionSpace, Coeff>::Type VectorV;
const GOS& gos;
SB& sb;
shared_ptr<Matrix> m;
Coeff reduction;
Coeff mindefect;
public:
StationaryMatrixLinearSolver(const GOS& gos_, SB& sb_, Coeff reduction_,
Coeff mindefect_ = 1e-99) :
gos(gos_), sb(sb_), reduction(reduction_), mindefect(mindefect_)
{ }
void apply (VectorU& x) {
Dune::Timer watch;
double timing;
if(!m) {
// setup new matrix from sparsity pattern
watch.reset();
m.reset(new Matrix(gos));
timing = watch.elapsed();
if (gos.trialGridFunctionSpace().gridView().comm().rank()==0)
std::cout << "=== matrix setup " << timing << " s" << std::endl;
// assemble matrix
watch.reset();
*m = 0.0;
gos.jacobian(x,*m);
timing = watch.elapsed();
if (gos.trialGridFunctionSpace().gridView().comm().rank()==0)
std::cout << "=== matrix assembly " << timing << " s" << std::endl;
}
else {
if (gos.trialGridFunctionSpace().gridView().comm().rank()==0)
std::cout << "=== matrix setup skipped" << std::endl
<< "=== matrix assembly skipped" << std::endl;
}
// assemble residual
watch.reset();
VectorV r(gos.testGridFunctionSpace(),0.0);
gos.residual(x,r); // residual is additive
timing = watch.elapsed();
if (gos.trialGridFunctionSpace().gridView().comm().rank()==0)
std::cout << "=== residual assembly " << timing << " s" << std::endl;
Coeff defect = sb.norm(r);
// compute correction
watch.reset();
VectorU z(gos.trialGridFunctionSpace(),0.0);
Coeff red = std::min(reduction,defect/mindefect);
sb.apply(*m,z,r,red); // solver makes right hand side consistent
timing = watch.elapsed();
if (gos.trialGridFunctionSpace().gridView().comm().rank()==0)
std::cout << "=== solving (reduction: " << red << ") "
<< timing << " s" << std::endl;
// and update
x -= z;
}
};
} // namespace PDELab
} // namespace Dune
#endif // DUNE_PDELAB_LINEARPROBLEM_STATIONARYMATRIX_HH
|