/usr/include/dune/pdelab/finiteelementmap/qkdggl.hh is in libdune-pdelab-dev 2.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// Qk DG basis with Gauss Lobatto points
#ifndef DUNE_QkDGGL_LOCALFINITEELEMENT_HH
#define DUNE_QkDGGL_LOCALFINITEELEMENT_HH
#include <dune/common/fvector.hh>
#include <dune/common/deprecated.hh>
#include <dune/geometry/type.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/localfunctions/common/localbasis.hh>
#include <dune/localfunctions/common/localfiniteelementtraits.hh>
#include <dune/localfunctions/common/localkey.hh>
#include <dune/localfunctions/common/localtoglobaladaptors.hh>
#include <dune/pdelab/finiteelementmap/qkdg.hh>
namespace Dune
{
namespace QkStuff
{
//! Lagrange polynomials at Gauss-Lobatto points
template<class D, class R, int k>
class GaussLobattoLagrangePolynomials
{
R xi_gl[k+1];
R w_gl[k+1];
public:
GaussLobattoLagrangePolynomials ()
{
int matched_order=-1;
int matched_size=-1;
for (int order=1; order<=40; order++)
{
const Dune::QuadratureRule<D,1>& rule = Dune::QuadratureRules<D,1>::rule(Dune::GeometryType::cube,order,Dune::QuadratureType::GaussLobatto);
if (rule.size()==k+1)
{
matched_order = order;
matched_size = rule.size();
//std::cout << "GL: input order=" << order << " delivered=" << rule.order() << " size=" << rule.size()<< std::endl;
break;
}
}
if (matched_order<0) DUNE_THROW(Dune::Exception,"could not find Gauss Lobatto rule of appropriate size");
const Dune::QuadratureRule<D,1>& rule = Dune::QuadratureRules<D,1>::rule(Dune::GeometryType::cube,matched_order,Dune::QuadratureType::GaussLobatto);
size_t count=0;
for (typename Dune::QuadratureRule<D,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
{
size_t group=count/2;
size_t member=count%2;
size_t newj;
if (member==1) newj=group; else newj=k-group;
xi_gl[newj] = it->position()[0];
w_gl[newj] = it->weight();
count++;
}
for (size_t j=0; j<matched_size/2; j++)
if (xi_gl[j]>0.5)
{
R temp=xi_gl[j];
xi_gl[j] = xi_gl[k-j];
xi_gl[k-j] = temp;
temp=w_gl[j];
w_gl[j] = w_gl[k-j];
w_gl[k-j] = temp;
}
// for (int i=0; i<k+1; i++)
// std::cout << "i=" << i
// << " xi=" << xi_gl[i]
// << " w=" << w_gl[i]
// << std::endl;
}
// ith Lagrange polynomial of degree k in one dimension
R p (int i, D x) const
{
R result(1.0);
for (int j=0; j<=k; j++)
if (j!=i) result *= (x-xi_gl[j])/(xi_gl[i]-xi_gl[j]);
return result;
}
// derivative of ith Lagrange polynomial of degree k in one dimension
R dp (int i, D x) const
{
R result(0.0);
for (int j=0; j<=k; j++)
if (j!=i)
{
R prod( 1.0/(xi_gl[i]-xi_gl[j]) );
for (int l=0; l<=k; l++)
if (l!=i && l!=j) prod *= (x-xi_gl[l])/(xi_gl[i]-xi_gl[l]);
result += prod;
}
return result;
}
// get ith Lagrange point
R x (int i) const
{
return xi_gl[i];
}
// get weight of ith Lagrange point
R w (int i) const
{
return w_gl[i];
}
};
/**@ingroup LocalBasisImplementation
\brief Lagrange shape functions of order k on the reference cube.
Also known as \f$Q^k\f$.
\tparam D Type to represent the field in the domain.
\tparam R Type to represent the field in the range.
\tparam k Polynomial degree
\tparam d Dimension of the cube
\nosubgrouping
*/
template<class D, class R, int k, int d>
class QkGLLocalBasis
{
enum{ n = QkSize<k,d>::value };
GaussLobattoLagrangePolynomials<D,R,k> poly;
public:
typedef LocalBasisTraits<D,d,Dune::FieldVector<D,d>,R,1,Dune::FieldVector<R,1>,Dune::FieldMatrix<R,1,d> > Traits;
//! \brief number of shape functions
unsigned int size () const
{
return QkSize<k,d>::value;
}
//! \brief Evaluate all shape functions
inline void evaluateFunction (const typename Traits::DomainType& in,
std::vector<typename Traits::RangeType>& out) const
{
out.resize(size());
for (size_t i=0; i<size(); i++)
{
// convert index i to multiindex
Dune::FieldVector<int,d> alpha(multiindex<k,d>(i));
// initialize product
out[i] = 1.0;
// dimension by dimension
for (int j=0; j<d; j++)
out[i] *= poly.p(alpha[j],in[j]);
}
}
//! \brief Evaluate Jacobian of all shape functions
inline void
evaluateJacobian (const typename Traits::DomainType& in, // position
std::vector<typename Traits::JacobianType>& out) const // return value
{
out.resize(size());
// Loop over all shape functions
for (size_t i=0; i<size(); i++)
{
// convert index i to multiindex
Dune::FieldVector<int,d> alpha(multiindex<k,d>(i));
// Loop over all coordinate directions
for (int j=0; j<d; j++)
{
// Initialize: the overall expression is a product
// if j-th bit of i is set to -1, else 1
out[i][0][j] = poly.dp(alpha[j],in[j]);
// rest of the product
for (int l=0; l<d; l++)
if (l!=j)
out[i][0][j] *= poly.p(alpha[l],in[l]);
}
}
}
//! \brief Polynomial order of the shape functions
unsigned int order () const
{
return k;
}
};
/** \todo Please doc me! */
template<int k, int d, class LB>
class QkGLLocalInterpolation
{
GaussLobattoLagrangePolynomials<double,double,k> poly;
public:
//! \brief Local interpolation of a function
template<typename F, typename C>
void interpolate (const F& f, std::vector<C>& out) const
{
typename LB::Traits::DomainType x;
typename LB::Traits::RangeType y;
out.resize(QkSize<k,d>::value);
for (int i=0; i<QkSize<k,d>::value; i++)
{
// convert index i to multiindex
Dune::FieldVector<int,d> alpha(multiindex<k,d>(i));
// Generate coordinate of the i-th Lagrange point
for (int j=0; j<d; j++)
x[j] = poly.x(alpha[j]);
f.evaluate(x,y); out[i] = y;
}
}
};
/** \todo Please doc me! */
template<int d, class LB>
class QkGLLocalInterpolation<0,d,LB>
{
public:
//! \brief Local interpolation of a function
template<typename F, typename C>
void interpolate (const F& f, std::vector<C>& out) const
{
typename LB::Traits::DomainType x(0.5);
typename LB::Traits::RangeType y;
f.evaluate(x,y);
out.resize(1);
out[0] = y;
}
};
}
/** \todo Please doc me !
*/
template<class D, class R, int k, int d>
class QkDGGLLocalFiniteElement
{
typedef QkStuff::QkGLLocalBasis<D,R,k,d> LocalBasis;
typedef QkStuff::QkDGLocalCoefficients<k,d> LocalCoefficients;
typedef QkStuff::QkGLLocalInterpolation<k,d,LocalBasis> LocalInterpolation;
public:
// static number of basis functions
enum{ n = QkStuff::QkSize<k,d>::value };
/** \todo Please doc me !
*/
typedef LocalFiniteElementTraits<LocalBasis,LocalCoefficients,LocalInterpolation> Traits;
/** \todo Please doc me !
*/
QkDGGLLocalFiniteElement ()
{
gt.makeCube(d);
}
/** \todo Please doc me !
*/
const typename Traits::LocalBasisType& localBasis () const
{
return basis;
}
/** \todo Please doc me !
*/
const typename Traits::LocalCoefficientsType& localCoefficients () const
{
return coefficients;
}
/** \todo Please doc me !
*/
const typename Traits::LocalInterpolationType& localInterpolation () const
{
return interpolation;
}
/** \todo Please doc me !
*/
GeometryType type () const
{
return gt;
}
QkDGGLLocalFiniteElement* clone () const
{
return new QkDGGLLocalFiniteElement(*this);
}
private:
LocalBasis basis;
LocalCoefficients coefficients;
LocalInterpolation interpolation;
GeometryType gt;
};
//! Factory for global-valued QkDG elements
/**
* \tparam Geometry Type of the geometry. Used to extract the domain field
* type and the dimension.
* \tparam RF Range field type.
*/
template<class Geometry, class RF, int k>
class QkDGGLFiniteElementFactory :
public ScalarLocalToGlobalFiniteElementAdaptorFactory<
QkDGGLLocalFiniteElement<
typename Geometry::ctype, RF, k, Geometry::mydimension
>,
Geometry
>
{
typedef QkDGGLLocalFiniteElement<
typename Geometry::ctype, RF, k, Geometry::mydimension
> LFE;
typedef ScalarLocalToGlobalFiniteElementAdaptorFactory<LFE, Geometry> Base;
static const LFE lfe;
public:
//! default constructor
QkDGGLFiniteElementFactory() : Base(lfe) {}
};
template<class Geometry, class RF, int k>
const typename QkDGGLFiniteElementFactory<Geometry, RF, k>::LFE
QkDGGLFiniteElementFactory<Geometry, RF, k>::lfe;
}
namespace Dune {
namespace PDELab {
//! wrap up element from local functions
//! \ingroup FiniteElementMap
template<class D, class R, int k, int d>
class QkDGGLLocalFiniteElementMap
: public Dune::PDELab::SimpleLocalFiniteElementMap< Dune::QkDGGLLocalFiniteElement<D,R,k,d> >
{
public:
bool fixedSize() const
{
return true;
}
std::size_t size(GeometryType gt) const
{
if (gt == GeometryType(GeometryType::cube,d))
return Dune::QkStuff::QkSize<k,d>::value;
else
return 0;
}
std::size_t maxLocalSize() const
{
return Dune::QkStuff::QkSize<k,d>::value;
}
};
}
}
#endif
|