This file is indexed.

/usr/include/dune/pdelab/finiteelementmap/pk1dbasis.hh is in libdune-pdelab-dev 2.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#ifndef DUNE_NPDE_PK1D_HH
#define DUNE_NPDE_PK1D_HH

#include<vector>
#include<iostream>
#include<dune/common/fvector.hh>
#include<dune/common/fmatrix.hh>
#include<dune/common/exceptions.hh>

#include<dune/geometry/type.hh>
#include<dune/geometry/referenceelements.hh>
#include<dune/geometry/quadraturerules.hh>

#include<dune/localfunctions/common/localbasis.hh>
#include<dune/localfunctions/common/localkey.hh>
#include<dune/localfunctions/common/localfiniteelementtraits.hh>

#include<dune/pdelab/finiteelementmap/finiteelementmap.hh>

namespace Dune {

  /** \brief Define the Pk Lagrange basis functions in 1d on the reference interval
   *
   *  \tparam D Type to represent domain.
   *  \tparam R Type to represent range.
   */
  template<class D, class R>
  class Pk1dLocalFiniteElement
  {
    //! \brief Class for the basis functions
    class Pk1dLocalBasis
    {
      Dune::GeometryType gt; // store geometry type for the basis
      std::size_t k;         // polynomial degree
      std::size_t n;         // the number of basis functions
      std::vector<R> s;      // Lagrange points on the reference interval
    public:
      typedef Dune::LocalBasisTraits<D,1,Dune::FieldVector<D,1>,R,1,Dune::FieldVector<R,1>,Dune::FieldMatrix<R,1,1>, 1> Traits;

      //! \brief make a basis object for given polynomial degree
      Pk1dLocalBasis (std::size_t k_) : gt(Dune::GeometryType::cube,1), k(k_), n(k_+1), s(n)
      {
        for (std::size_t i=0; i<=k; i++) s[i] = (1.0*i)/k;
      }

      //! \brief return number of basis functions
      std::size_t size () const { return n; }

      //! \brief Evaluate all shape functions at a given point in local coordinates
      inline void evaluateFunction (const typename Traits::DomainType& in,
                                    std::vector<typename Traits::RangeType>& out) const {
        out.resize(n);
        for (std::size_t i=0; i<=k; i++)
          {
            out[i] = 1.0;
            for (std::size_t j=0; j<=k; j++)
              if (i!=j) out[i] *= (in[0]-s[j])/(s[i]-s[j]);
          }
      }

      //! \brief Evaluate Jacobian of all shape functions
      inline void
      evaluateJacobian (const typename Traits::DomainType& in,
                        std::vector<typename Traits::JacobianType>& out) const {
        out.resize(n);
        for (std::size_t i=0; i<=k; i++) // derivative of basis function i
          {
            out[i][0][0] = 0.0;
            R factor = 1.0;
            R denominator = 1.0;
            for (std::size_t j=0; j<=k; j++)
              {
                if (j==i) continue; // treat factor (x-s_j)
                denominator *= s[i]-s[j];
                R a=1.0;            // product of remaining factors (might be empty)
                for (std::size_t l=j+1; l<=k; l++)
                  {
                    if (l==i) continue;
                    a *= in[0]-s[l];
                  }
                out[i][0][0] += factor*a;
                factor *= in[0]-s[j];
              }
            out[i][0][0] /= denominator;
          }
      }

      //! \brief Polynomial order of the basis functions
      unsigned int order () const  {
        return k;
      }

      //! \brief return geometry type
      Dune::GeometryType type () const { return gt; }
    };

    //! \brief Class for the basis functions
    class Pk1dLocalCoefficients
    {
    public:
      Pk1dLocalCoefficients (std::size_t k_) : k(k_), n(k_+1), li(k_+1)  {
        li[0] = Dune::LocalKey(0,1,0);
        for (int i=1; i<int(k); i++) li[i] = Dune::LocalKey(0,0,i-1);
        li[k] = Dune::LocalKey(1,1,0);
      }

      //! number of coefficients
      std::size_t size () const { return n; }

      //! map index i to local key
      const Dune::LocalKey& localKey (int i) const  {
        return li[i];
      }

    private:
      std::size_t k;                  // polynomial degree
      std::size_t n;                  // the number of basis functions
      std::vector<Dune::LocalKey> li; // assignment of basis function to subentities
    };

    //! \brief Class for interpolating a given function by the basis
    template<typename LB>
    class Pk1dLocalInterpolation
    {
    public:
      Pk1dLocalInterpolation (std::size_t k_) : k(k_), n(k_+1) {}

      //! \brief Local interpolation of a function
      template<typename F, typename C>
      void interpolate (const F& f, std::vector<C>& out) const
      {
        out.resize(n);
        typename LB::Traits::DomainType x;
        typename LB::Traits::RangeType y;
        for (int i=0; i<=int(k); i++)
          {
            x[0] = (1.0*i)/k; // the point to evaluate
            f.evaluate(x,y);
            out[i] = y[0];
          }
      }
    private:
      std::size_t k;                  // polynomial degree
      std::size_t n;                  // the number of basis functions
    };

    Dune::GeometryType gt;
    Pk1dLocalBasis basis;
    Pk1dLocalCoefficients coefficients;
    Pk1dLocalInterpolation<Pk1dLocalBasis> interpolation;

  public:
    typedef Dune::LocalFiniteElementTraits<Pk1dLocalBasis,
                                           Pk1dLocalCoefficients,
                                           Pk1dLocalInterpolation<Pk1dLocalBasis> > Traits;

    Pk1dLocalFiniteElement (std::size_t k)
      : gt(Dune::GeometryType::cube,1), basis(k), coefficients(k), interpolation(k)
    {}

    const typename Traits::LocalBasisType& localBasis () const
    {
      return basis;
    }

    const typename Traits::LocalCoefficientsType& localCoefficients () const
    {
      return coefficients;
    }

    const typename Traits::LocalInterpolationType& localInterpolation () const
    {
      return interpolation;
    }

    Dune::GeometryType type () const { return gt; }

    Pk1dLocalFiniteElement* clone () const {
      return new Pk1dLocalFiniteElement(*this);
    }
  };

  namespace PDELab {

    /** \brief FiniteElementMap for the Pk basis in 1d
     *
     *  \tparam D Type to represent domain.
     *  \tparam R Type to represent range.
     */
    template<class D, class R>
    class Pk1dLocalFiniteElementMap
      : public Dune::PDELab::SimpleLocalFiniteElementMap< Pk1dLocalFiniteElement<D,R> >
    {
    public:
      Pk1dLocalFiniteElementMap (std::size_t k)
        : Dune::PDELab::SimpleLocalFiniteElementMap< Pk1dLocalFiniteElement<D,R> >(Pk1dLocalFiniteElement<D,R>(k))
        , _k(k)
      {}

      bool fixedSize() const
      {
        return true;
      }

      std::size_t size(GeometryType gt) const
      {
        if (gt.isVertex())
          return _k > 0 ? 1 : 0;
        if (gt.isLine())
          return _k > 0 ? _k - 1 : 1;
        return 0;
      }

      std::size_t maxLocalSize() const
      {
        return _k + 1;
      }

    private:
      const std::size_t _k;
    };
  }
}
#endif