This file is indexed.

/usr/include/dune/pdelab/constraints/hangingnodemanager.hh is in libdune-pdelab-dev 2.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
// -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=8 sw=2 sts=2:

#ifndef HANGINGNODEMANAGER_HH
#define HANGINGNODEMANAGER_HH

#include<dune/grid/common/grid.hh>
#include<dune/grid/common/mcmgmapper.hh>
#include<dune/common/float_cmp.hh>

#include"../common/geometrywrapper.hh"

namespace Dune {
  namespace PDELab {

    template<class Grid, class BoundaryFunction>
    class HangingNodeManager
    {
    private:
#ifdef DEBUG
      enum{ verbosity = 2 };
#else
      enum{ verbosity = 0 };
#endif
      typedef typename Grid::LeafIndexSet::IndexType IndexType;

    private:
      class NodeInfo
      {
      public:
        // Minimum level of elements containing this node
        unsigned short minimum_level;

        // Maximum level of elements containing this node
        unsigned short maximum_level;

        // Minimum level of elements touching this node
        unsigned short minimum_touching_level;

        bool is_boundary;

        void addLevel(unsigned short level)
        {
          minimum_level = std::min(minimum_level,level);
          maximum_level = std::max(maximum_level,level);
        }

        void addTouchingLevel(unsigned short level)
        {
          minimum_touching_level = std::min(minimum_touching_level,level);
        }

        NodeInfo() : minimum_level(std::numeric_limits<unsigned short>::max()),
                     maximum_level(0),
                     minimum_touching_level(std::numeric_limits<unsigned short>::max()),
                     is_boundary(false)
        {}
      };

      std::vector<NodeInfo> node_info;

    public:

      class NodeState
      {
        friend class HangingNodeManager;
      private:
        bool is_boundary;
        bool is_hanging;

      public:

        inline bool isBoundary() const { return is_boundary; }
        inline bool isHanging() const { return is_hanging; }

        NodeState() :is_boundary(false),
                     is_hanging(false)
        {}
      };


      typedef typename Grid::LeafGridView GridView;
      enum {dim = GridView::dimension};
      typedef typename GridView::template Codim<0>::EntityPointer CellEntityPointer;
      typedef typename GridView::template Codim<0>::Entity Cell;

      typedef typename GridView::template Codim<dim>::EntityPointer VertexEntityPointer;
      typedef typename GridView::template Codim<0>::Iterator Iterator;
      typedef typename GridView::IntersectionIterator IntersectionIterator;
      typedef typename GridView::Grid::ctype ctype;
      typedef typename Dune::FieldVector<ctype,dim> Point;
      typedef typename Dune::FieldVector<ctype,dim-1> FacePoint;

      typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView,
                                                        MCMGElementLayout> CellMapper;

      Grid & grid;
      const BoundaryFunction & boundaryFunction;
      CellMapper cell_mapper;

    public:

      void analyzeView()
      {
        cell_mapper.update();
        const typename GridView::IndexSet& indexSet = grid.leafGridView().indexSet();

        node_info = std::vector<NodeInfo>(indexSet.size(dim));

        const GridView & gv = grid.leafGridView();

        Iterator it = gv.template begin<0>();
        Iterator eit = gv.template end<0>();

        // loop over all codim<0> leaf elements of the partially refined grid
        for(;it!=eit;++it){

          const Dune::ReferenceElement<double,dim> &
            reference_element =
            Dune::ReferenceElements<double,dim>::general(it->geometry().type());


          // level of this element
          const unsigned short level = it->level();

          // number of vertices in this element
          const IndexType v_size = reference_element.size(dim);

          // update minimum_level and maximum_level for vertices in this
          // cell
          // loop over all vertices of the element
          for(IndexType i=0; i<v_size; ++i){
            const IndexType v_globalindex = indexSet.subIndex(*it,i,dim);
            NodeInfo& ni = node_info[v_globalindex];
            ni.addLevel(level);

            if(verbosity>10){
              // This will produce a lot of output on the screen!
              std::cout << "   cell-id=" << cell_mapper.map(*it);
              std::cout << "   level=" << level;
              std::cout << "   v_size=" << v_size;
              std::cout << "   v_globalindex = " << v_globalindex;
              std::cout << "   maximum_level = " << ni.maximum_level;
              std::cout << "   minimum_level = " << ni.minimum_level;
              std::cout << std::endl;
            }

          }

          // Now we still have to update minimum_touching_level for this
          // cell

          unsigned int intersection_index = 0;
          IntersectionIterator fit = gv.ibegin(*it);
          IntersectionIterator efit = gv.iend(*it);
          typedef typename IntersectionIterator::Intersection Intersection;

          // Loop over faces
          for(;fit!=efit;++fit,++intersection_index){

            const Dune::ReferenceElement<double,dim-1> &
              reference_face_element =
              Dune::ReferenceElements<double,dim-1>::general(fit->geometry().type());

            const int eLocalIndex =  fit->indexInInside();
            const int e_level = fit->inside()->level();

            // number of vertices on the face
            const int e_v_size = reference_element.size(eLocalIndex,1,dim);

            if((*fit).boundary()) {

              // loop over vertices on the face
              for(int i=0; i<e_v_size;++i){
                const int e_v_index = reference_element.subEntity(eLocalIndex,1,i,dim);
                const IndexType v_globalindex = indexSet.subIndex(*it,e_v_index,dim);

                const FacePoint facelocal_position = reference_face_element.position(i,dim-1);

                /*
                  typename BoundaryFunction::Traits::RangeType boundary_value;
                  boundaryFunction.evaluate(IntersectionGeometry<Intersection>(*fit,intersection_index),
                  facelocal_position,boundary_value);
                  if(boundary_value)
                  node_info[v_globalindex].is_boundary=true;
                  else
                  node_info[v_globalindex].is_boundary=false;
                */

                NodeInfo& ni = node_info[v_globalindex];
                ni.is_boundary = boundaryFunction.isDirichlet(IntersectionGeometry<Intersection>(*fit,intersection_index),facelocal_position);
                ni.addTouchingLevel(e_level);
              }

              // We are done here - the remaining tests are only required for neighbor intersections
              continue;
            }

            const int f_level = fit->outside()->level();

            // a conforming face has no hanging nodes
            if(fit->conforming())
              continue;

            // so far no support for initially non conforming grids
            assert(e_level != f_level);

            // this check needs to be performed on the element containing
            // the hanging node only
            if(e_level < f_level)
              continue;

            // loop over vertices on the face
            for(int i=0; i<e_v_size;++i){
              const int e_v_index = reference_element.subEntity(eLocalIndex,1,i,dim);
              const IndexType v_globalindex = indexSet.subIndex(*it,e_v_index,dim);

              node_info[v_globalindex].addTouchingLevel(f_level);
            }

          } // end of loop over faces

        }
      }

      HangingNodeManager(Grid & _grid, const BoundaryFunction & _boundaryFunction)
        : grid(_grid),
          boundaryFunction(_boundaryFunction),
          cell_mapper(grid.leafGridView())
      { analyzeView(); }

      const std::vector<NodeState> hangingNodes(const Cell& e) const
      {
        const typename GridView::IndexSet& indexSet = grid.leafGridView().indexSet();
        std::vector<NodeState> is_hanging;

        const Dune::ReferenceElement<double,dim> &
          reference_element =
          Dune::ReferenceElements<double,dim>::general(e.geometry().type());

        // number of vertices in this element
        const IndexType v_size = reference_element.size(dim);

        // make sure the return array is big enough
        is_hanging.resize(v_size);

        // update minimum_level and maximum_level for vertices in this
        // cell
        // loop over vertices of the element
        for(IndexType i=0; i<v_size; ++i){
          const IndexType v_globalindex = indexSet.subIndex(e,i,dim);

          // here we make use of the fact that a node is hanging if and
          // only if it touches a cell of a level smaller than the
          // smallest level of all element containing the node
          const NodeInfo & v_info = node_info[v_globalindex];
          if(v_info.minimum_touching_level < v_info.minimum_level){
            is_hanging[i].is_hanging = true;
            is_hanging[i].is_boundary = v_info.is_boundary;
#ifndef NDEBUG
            if(verbosity>1){
              const Point & local  = reference_element.position(i,dim);
              const Point global = e.geometry().global(local);
              if(verbosity)
                std::cout << "Found hanging node with id " << v_globalindex << " at " << global << std::endl;
            }
#endif
          }
          else{
            is_hanging[i].is_hanging = false;
            is_hanging[i].is_boundary = v_info.is_boundary;
          }
        }

        return is_hanging;
      }

      void adaptToIsolatedHangingNodes()
      {
        if(verbosity)
          std::cout << "Begin isolation of hanging nodes" << std::endl;

        const typename GridView::IndexSet& indexSet = grid.leafGridView().indexSet();

        size_t iterations(0);

        bool reiterate;

        // Iterate until the isolation condition is achieved.
        do{
          size_t refinements(0);
          reiterate = false;

          const GridView & gv = grid.leafGridView();

          Iterator it = gv.template begin<0>();
          Iterator eit = gv.template end<0>();

          // loop over all codim<0> leaf elements of the partially refined grid
          for(;it!=eit;++it){

            const Dune::ReferenceElement<double,dim> &
              reference_element =
              Dune::ReferenceElements<double,dim>::general(it->geometry().type());

            //std::cout << "cell center = " << it->geometry().center() << std::endl;

            // get the refinement level of the element
            const unsigned short level = it->level();

            //std::cout << "level = " << level << std::endl;

            // number of vertices in this element
            const IndexType v_size = reference_element.size(dim);

            // update minimum_level and maximum_level for vertices in this
            // cell
            // loop over vertices of the element
            for(IndexType i=0; i<v_size; ++i){

              const IndexType v_globalindex = indexSet.subIndex(*it,i,dim);

              const NodeInfo & v_info = node_info[v_globalindex];

              //std::cout << "maximum_level = " << v_info.maximum_level << std::endl;

              const unsigned short level_diff = v_info.maximum_level - level;
              if( level_diff > 1){
                grid.mark(1, *it);   // Mark this element for an extra refinement if it has a hanging node belonging to a neighbouring element of a refinement level + 2 or more
                reiterate = true;    // Once an element has to be refined, the procedure needs to be repeated!
                refinements++;       // Count the number of refinements.

                if(verbosity>10){
                  // This will produce a lot of output on the screen!
                  std::cout << "   cell-id=" << cell_mapper.map(*it);
                  std::cout << "   level=" << level;
                  std::cout << "   v_size=" << v_size;
                  std::cout << "   v_globalindex = " << v_globalindex;
                  std::cout << std::endl;
                  std::cout << "Refining element nr " << cell_mapper.map(*it)
                            << " to isolate hanging nodes. Level diff = "
                            << v_info.maximum_level << " - " << level<< std::endl;
                }
                break;
              }
            } // end of loop over vertices


            if( it->geometry().type().isSimplex() ){
              //
              // SPECIAL CASE for SIMPLICES:
              // Add extra check to find out "neighbouring" elements of level +2 or more
              // which share only a hanging node, but do not share an intersection
              // with the current element.
              //
              if( !reiterate ){

                //std::cout << "Extra check for SIMPLICES:" << std::endl;

                unsigned int intersection_index = 0;
                IntersectionIterator fit = gv.ibegin(*it);
                IntersectionIterator efit = gv.iend(*it);

                bool bJumpOut = false;

                // Loop over faces
                for(;fit!=efit;++fit,++intersection_index){

                  // only internal faces need to be taken care of
                  if(!(*fit).boundary()) {

                    const int e_level = fit->inside()->level();
                    const int f_level = fit->outside()->level();

                    if( f_level > e_level ){

                      // We have to locate the potential hanging node
                      // for which we do the extra Check.

                      // get element-local index of the intersection
                      const int eLocalIndex =  fit->indexInInside();

                      // Number of vertices on the face:
                      // A face(=edge) in a triangle has two vertices.
                      // A face(=triangle) in a tetrahedron has three vertices.
                      // const int e_v_size = reference_element.size(eLocalIndex,1,dim);

                      int nEdgeCenters = 0;
                      if( dim == 2 ){
                        // 2D-case: We need to check later for each vertex of the
                        // neigbouring element if it lies on the center of the element edge.
                        // Take care: fit->geometry().center() might return the face
                        // center of a refined neighbouring element!
                        // But we need the face center of the coarse face of the
                        // current element. Therefore loop over vertices on the face
                        // to calculate the proper face center for the coarse face!
                        nEdgeCenters = 1;
                      }
                      else{
                        // 3D-case: We need to check later for each vertex of the
                        // neigbouring element if it lies on the center of one of
                        // the 3 edges of the element face.
                        nEdgeCenters = 3;
                      }
                      std::vector<Dune::FieldVector<ctype,dim> >
                        edgecenter( nEdgeCenters, Dune::FieldVector<ctype,dim>(0) );
                      //std::cout << " edgecenter = " << edgecenter << std::endl;

                      // loop over center of the face (2d) or center of the edges of the face(3d)
                      for(int counter=0; counter<nEdgeCenters; ++counter){

                        int cornerIndex1 = counter % dim;
                        int cornerIndex2 = (counter+1) % dim;

                        const int e_v_index_1 =
                          reference_element.subEntity(eLocalIndex,1,cornerIndex1,dim);

                        const int e_v_index_2 =
                          reference_element.subEntity(eLocalIndex,1,cornerIndex2,dim);

                        const VertexEntityPointer vertex1 =
                          it->template subEntity<dim>(e_v_index_1);

                        const VertexEntityPointer vertex2 =
                          it->template subEntity<dim>(e_v_index_2);

                        edgecenter[counter] += vertex1->geometry().center();
                        edgecenter[counter] += vertex2->geometry().center();
                        edgecenter[counter] /= ctype( 2 );
                        //std::cout << " edgecenter = " << edgecenter << std::endl;


                        //
                        // check for the neighbouring element now...
                        //
                        const Dune::ReferenceElement<double,dim> &
                          nb_reference_element =
                          Dune::ReferenceElements<double,dim>::general( fit->outside()->geometry().type() );

                        // number of vertices in that neigbouring element
                        const IndexType nb_v_size = nb_reference_element.size(dim);

                        // loop over vertices of the neigbouring element
                        for(IndexType i=0; i<nb_v_size; ++i){

                          const VertexEntityPointer & nb_vertex =
                            fit->outside()->template subEntity<dim>(i);

                          bool doExtraCheck = false;

                          Dune::FieldVector<ctype,dim> center_diff ( edgecenter[counter] );

                          center_diff -= nb_vertex->geometry().center();

                          //std::cout << "nb_vertex = " << nb_vertex->geometry().center() << std::endl;

                          if( center_diff.two_norm2() < 5e-12 ){
                            doExtraCheck = true;
                          }


                          if( doExtraCheck ){

                            //std::cout << "doExtraCheck for node at "
                            // << nb_vertex->geometry().center() << std::endl;

                            const IndexType nb_v_globalindex = indexSet.index(*nb_vertex);

                            const NodeInfo & nb_v_info = node_info[nb_v_globalindex];

                            const unsigned short level_diff = nb_v_info.maximum_level - level;

                            if( level_diff > 1){
                              bJumpOut = true;
                              grid.mark(1, *it);   // Mark this element for an extra refinement if it has a hanging node belonging to a neighbouring element of a refinement level + 2 or more
                              reiterate = true;    // Once an element has to be refined, the procedure needs to be repeated!
                              refinements++;       // Count the number of refinements.

                              if(verbosity>10){
                                // This will produce a lot of output on the screen!
                                std::cout << "   cell-id=" << cell_mapper.map(*it);
                                std::cout << "   level=" << level;
                                std::cout << "   v_size=" << v_size;
                                std::cout << std::endl;
                                std::cout << "   Extra refining for element nr " << cell_mapper.map(*it)
                                          << " to isolate hanging nodes. Level diff = "
                                          << nb_v_info.maximum_level << " - " << level<< std::endl;
                              }
                              break;

                            } // end if level_diff > 1

                          } // end if( doExtraCheck )
                          if( bJumpOut ) break;
                        } // end of loop over vertices of the neigbouring element
                        if( bJumpOut ) break;
                      } // end counter loop

                    } // end if( f_level > e_level )

                  } // end if not boundary
                  if( bJumpOut ) break;
                } // end of loop over faces of the element

              } // end if(!reiterate)

            } // end if geometry().type().isSimplex()

          } // end of loop over all codim<0> leaf elements


          if(reiterate){
            if(verbosity)
              std::cout << "Re-adapt for isolation of hanging nodes..." << std::endl;
            grid.preAdapt();
            grid.adapt();
            grid.postAdapt();
            analyzeView();
          }

          iterations++;
          if(verbosity)
            std::cout << "In iteration " << iterations << " there were "
                      << refinements << " grid cells to be refined additionally to isolate hanging nodes." << std::endl;
        }while(reiterate);
      }

    };

  }
}
#endif