/usr/include/dune/pdelab/common/multiindex.hh is in libdune-pdelab-dev 2.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_PDELAB_COMMON_MULTIINDEX_HH
#define DUNE_PDELAB_COMMON_MULTIINDEX_HH
#include <dune/common/reservedvector.hh>
#include <dune/geometry/typeindex.hh>
#include <dune/common/hash.hh>
#include <algorithm>
#include <iomanip>
namespace Dune {
namespace PDELab {
//! A multi-index representing a degree of freedom in a GridFunctionSpace.
/**
* A MultiIndex provides a way for identifying degrees of freedom in a (possibly
* nested) GridFunctionSpace without imposing any kind of ordering. For that
* purpose, a MultiIndex identifies a degree of freedom by recording
*
* - the geometry type of the grid entity associated with the DOF,
* - an index value uniquely identifying the grid entity among all grid entities
* of its geometry type (usually just the index value of some Grid IndexSet),
* - a tuple of entity-local indices.
*
* The length of this index tuple is limited by the template parameter \ref n, which will
* usually be equal to the maximum depth of the current GridFunctionSpace tree. Moreover,
* there will never be two identical index tuples associated with the same grid entity.
*
* The index tuple is oriented from left to right when traversing up the tree (i.e.
* towards the root node) and from right to left when drilling down from the root node
* towards a leaf. For non-leaf nodes, the associated index entry identifies the child
* GridFunctionSpace that the degree of freedom is associated with, while for leafs, it
* provides a way to provide multiple degrees of freedom for a single grid entity (usually,
* the index value for a leaf space will correspond to the LocalKey::index() value from
* the finite element).
*
* Note that in general, the length of the index tuple will not be the same for all degrees
* of freedom in a GridFunctionSpace. Consider the following example of a Taylor-Hood element:
* \dot
* graph taylor_hood {
* node [shape=record, style=rounded, fontname=Helvetica, fontsize=8, height=0.2, width=0.4];
* TH [ label="Taylor-Hood"];
* TH -- V;
* V [ label="Velocity"];
* TH -- P;
* P [ label="Pressure"];
* V -- Vx;
* Vx [ label="x Velocity" ];
* V -- Vy;
* Vy [ label="y Velocity" ];
* }
* \enddot
* In this case, degrees of freedom for the velocity components will have an index tuple of length
* 3, while those related to pressure will only have an index tuple of length 2. For the Taylor-Hood
* space given above, the multiindices associated to a triangle with vertex and edge indices in the
* range {0,1,2} are
*
* <table>
* <tr>
* <th>GeometryType</th>
* <th>entity index</th>
* <th>index tuple</th>
* </tr>
* <tr>
* <td>Point</td>
* <td>0</td>
* <td>0, 0, 0</td>
* </tr>
* <tr>
* <td>Point</td>
* <td>1</td>
* <td>0, 0, 0</td>
* </tr>
* <tr>
* <td>Point</td>
* <td>2</td>
* <td>0, 0, 0</td>
* </tr>
* <tr>
* <td>Line</td>
* <td>0</td>
* <td>0, 0, 0</td>
* </tr>
* <tr>
* <td>Line</td>
* <td>1</td>
* <td>0, 0, 0</td>
* </tr>
* <tr>
* <td>Line</td>
* <td>2</td>
* <td>0, 0, 0</td>
* </tr>
* <tr>
* <td>Point</td>
* <td>0</td>
* <td>0, 1, 0</td>
* </tr>
* <tr>
* <td>Point</td>
* <td>1</td>
* <td>0, 1, 0</td>
* </tr>
* <tr>
* <td>Point</td>
* <td>2</td>
* <td>0, 1, 0</td>
* </tr>
* <tr>
* <td>Line</td>
* <td>0</td>
* <td>0, 1, 0</td>
* </tr>
* <tr>
* <td>Line</td>
* <td>1</td>
* <td>0, 1, 0</td>
* </tr>
* <tr>
* <td>Line</td>
* <td>2</td>
* <td>0, 1, 0</td>
* </tr>
* <tr>
* <td>Point</td>
* <td>0</td>
* <td>0, 1</td>
* </tr>
* <tr>
* <td>Point</td>
* <td>1</td>
* <td>0, 1</td>
* </tr>
* <tr>
* <td>Point</td>
* <td>2</td>
* <td>0, 1</td>
* </tr>
* </table>
*
* \tparam T the type of the index entries.
* \tparam n the maximum number of indices in the MultiIndex.
*/
template<typename T, std::size_t n>
class MultiIndex
: public ReservedVector<T,n>
{
typedef ReservedVector<T,n> base_type;
public:
//! The maximum possible depth of the MultiIndex.
static const std::size_t max_depth = n;
class View
{
friend class MultiIndex;
public:
//! The maximum possible depth of the MultiIndex.
static const std::size_t max_depth = n;
typedef typename base_type::value_type value_type;
typedef typename base_type::pointer pointer;
typedef typename base_type::const_reference reference;
typedef typename base_type::const_reference const_reference;
typedef typename base_type::size_type size_type;
typedef typename base_type::difference_type difference_type;
typedef typename base_type::const_iterator iterator;
typedef typename base_type::const_iterator const_iterator;
private:
View(const MultiIndex& mi, size_type size)
: _mi(mi)
, _size(size)
{}
public:
void clear()
{
_size = 0;
}
reference front()
{
return _mi.front();
}
const_reference front() const
{
return _mi.front();
}
reference back()
{
return _mi[_size-1];
}
const_reference back() const
{
return _mi[_size-1];
}
reference operator[](size_type i)
{
assert(i < _size);
return _mi[i];
}
const_reference operator[](size_type i) const
{
assert(i < _size);
return _mi[i];
}
void resize(size_type s)
{
assert(s <= _mi.size());
_size = s;
}
View back_popped() const
{
assert(_size > 0);
return View(_mi,_size-1);
}
size_type size() const
{
return _size;
}
bool empty() const
{
return _size == 0;
}
friend std::ostream& operator<< (std::ostream& s, const View& mi)
{
s << "(";
// fill up to maximum depth for consistent formatting
for (std::size_t i = mi.size(); i < max_depth; ++i)
s << " -";
for (typename ReservedVector<T,n>::const_iterator it = mi._mi.begin(); it != mi._mi.begin() + mi.size(); ++it)
s << std::setw(3) << *it;
s << ")";
return s;
}
private:
const MultiIndex& _mi;
size_type _size;
};
MultiIndex()
{}
MultiIndex(const View& view)
: base_type(static_cast<const base_type&>(view._mi))
{
this->resize(view.size());
}
void set(typename ReservedVector<T,n>::value_type index)
{
this->clear();
this->push_back(index);
}
//! Writes a pretty representation of the MultiIndex to the given std::ostream.
friend std::ostream& operator<< (std::ostream& s, const MultiIndex& mi)
{
s << "(";
// fill up to maximum depth for consistent formatting
for (std::size_t i = mi.size(); i < max_depth; ++i)
s << " -";
for (typename ReservedVector<T,n>::const_iterator it = mi.begin(); it != mi.end(); ++it)
s << std::setw(3) << *it;
s << ")";
return s;
}
View view() const
{
return View(*this,this->size());
}
View view(std::size_t size) const
{
return View(*this,size);
}
//! Tests whether two MultiIndices are equal.
/**
* \note Only MultiIndices of identical max_depth are comparable
*/
bool operator== (const MultiIndex& r) const
{
return
this->size() == r.size() &&
std::equal(this->begin(),this->end(),r.begin());
}
//! Tests whether two MultiIndices are not equal.
bool operator!= (const MultiIndex& r) const
{
return !(*this == r);
}
#if 0
bool operator< (const MultiIndex& r) const
{
// FIXME: think about natural ordering
return _c.size() < _r.size();
return std::lexicographical_compare(_c.begin(),_c.end(),r._c.begin(),r._c.end());
}
#endif
};
template<typename T, std::size_t n>
inline std::size_t hash_value(const MultiIndex<T,n>& mi)
{
return hash_range(mi.begin(),mi.end());
}
} // namespace PDELab
} // namespace Dune
DUNE_DEFINE_HASH(DUNE_HASH_TEMPLATE_ARGS(typename T, std::size_t n),DUNE_HASH_TYPE(Dune::PDELab::MultiIndex<T,n>))
#endif // DUNE_PDELAB_COMMON_MULTIINDEX_HH
|