/usr/include/dune/pdelab/common/function.hh is in libdune-pdelab-dev 2.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 | //-*- tab-width: 4; indent-tabs-mode: nil -*-
#ifndef DUNE_PDELAB_FUNCTION_HH
#define DUNE_PDELAB_FUNCTION_HH
#include <iostream>
#include <sstream>
#include <dune/common/deprecated.hh>
#include <dune/common/static_assert.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/grid/utility/hierarchicsearch.hh>
#include <dune/typetree/typetree.hh>
#include "vtkexport.hh"
#include "geometrywrapper.hh"
namespace Dune {
namespace PDELab {
//! \addtogroup PDELab_Function Function
//! \ingroup PDELab
//! \{
//! traits class holding function signature, same as in local function
//! \tparam DF The numeric type of the field representing the domain.
//! \tparam dimension of the domain.
//! \tparam D The type of the domain.
//! \tparam m The dimension of the range.
//! \tparam RF The numeric type of the field representing the range.
//! \tparam R The type of the range.
template<class DF, int n, class D, class RF, int m, class R>
struct FunctionTraits
{
//! \brief Export type for domain field
typedef DF DomainFieldType;
//! \brief Enum for domain dimension
enum {
//! \brief dimension of the domain
dimDomain = n
};
//! \brief domain type in dim-size coordinates
typedef D DomainType;
//! \brief Export type for range field
typedef RF RangeFieldType;
//! \brief Enum for range dimension
enum {
//! \brief dimension of the range
dimRange = m
};
//! \brief range type
typedef R RangeType;
};
//! \brief a Function that maps x in DomainType to y in RangeType
//! \tparam T The type of the function traits
//! \tparam Imp The type implementing the interface.
template<class T, class Imp>
class FunctionInterface
{
public:
//! \brief Export type traits
typedef T Traits;
/** \brief Evaluate all basis function at given position
Evaluates all shape functions at the given position and returns
these values in a vector.
*/
inline void evaluate (const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
asImp().evaluate(x,y);
}
private:
Imp& asImp () {return static_cast<Imp &> (*this);}
const Imp& asImp () const {return static_cast<const Imp &>(*this);}
};
//! \brief Default class for additional methods in instationary functions
class InstationaryFunctionDefaults
{
public:
//! set time for subsequent evaluation
/**
* This method sets the time for subsequent calls to any of the
* evaluation methods.
*
* \note This default method does nothing, it just ensures setTime() can
* be called without ill effects.
* \note Function implementation are free to restrict the types of
* acceptable parameters. This should be noted in the function
* classes documentation.
*/
template<typename Time>
inline void setTime(Time t)
{ }
};
//! \brief GV The type of the grid view the function lives on.
template<typename GV>
struct PowerCompositeGridFunctionTraits
{
//! \brief The type of the grid view the function lives on.
typedef GV GridViewType;
//! \brief codim 0 entity
typedef typename GV::Traits::template Codim<0>::Entity ElementType;
};
//! Mixin base class for specifying output hints to I/O routines like VTK.
class GridFunctionOutputParameters
{
public:
//! Namespace for output-related data types and enums.
struct Output
{
//! The type of the data set.
/**
* This information can be used by a VTKWriter to pick the correct
* VTK data set type.
*/
enum DataSetType
{
vertexData, //!< A data set with vertex values.
cellData //!< A data set with cell values.
};
};
//! Standard constructor.
/**
* \param dataSetType The type of the data set represented by this function.
*/
GridFunctionOutputParameters(Output::DataSetType dataSetType = Output::vertexData)
: _dataSetType(dataSetType)
{}
//! Return the data set type of this function.
Output::DataSetType dataSetType() const
{
return _dataSetType;
}
//! Set the data set type of this function.
void setDataSetType(Output::DataSetType dataSetType)
{
_dataSetType = dataSetType;
}
private:
Output::DataSetType _dataSetType;
};
//! \brief traits class holding the function signature, same as in local function
//! \brief GV The type of the grid view the function lives on.
//! \brief RF The numeric type used in the range of the function.
//! \brief m The dimension of the range.
//! \tparam R The numeric type of the field representing the range.
template<class GV, class RF, int m, class R>
struct GridFunctionTraits
: public FunctionTraits<typename GV::Grid::ctype, GV::dimension,
Dune::FieldVector<typename GV::Grid::ctype,
GV::dimension>,
RF, m, R>
, public PowerCompositeGridFunctionTraits<GV>
{
};
//! \brief a GridFunction maps x in DomainType to y in RangeType
template<class T, class Imp>
class GridFunctionInterface
: public GridFunctionOutputParameters
{
public:
//! \brief Export type traits
typedef T Traits;
GridFunctionInterface(Output::DataSetType dataSetType = Output::vertexData)
: GridFunctionOutputParameters(dataSetType)
{}
/** \brief Evaluate the GridFunction at given position
Evaluates components of the grid function at the given position and
returns these values in a vector.
\param[in] e The entity to evaluate on
\param[in] x The position in entity-local coordinates
\param[out] y The result of the evaluation
*/
inline void evaluate (const typename Traits::ElementType& e,
const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
asImp().evaluate(e,x,y);
}
//! \brief get a reference to the GridView
inline const typename Traits::GridViewType& getGridView () const
{
return asImp().getGridView();
}
private:
Imp& asImp () {return static_cast<Imp &> (*this);}
const Imp& asImp () const {return static_cast<const Imp &>(*this);}
};
//! \brief traits class holding function signature, same as in local function
//! \tparam GV The type of the grid view the function lives on.
//! \tparam RF The numeric type of the field representing the range.
//! \tparam m The dimension of the range.
//! \tparam R The type of the range.
template<class GV, class RF, int m, class R>
struct BoundaryGridFunctionTraits
: public FunctionTraits<typename GV::Grid::ctype, GV::dimension-1,
Dune::FieldVector<typename GV::Grid::ctype,
GV::dimension-1>,
RF, m, R>
{
//! \brief Export grid view type in addition
typedef GV GridViewType;
};
//! \brief A BoundaryGridFunction allows evaluation on boundary intersections
// \tparam T The type of the BoundaryGridFunctionTraits.
// \tparam Imp The type of the implementing class.
template<class T, class Imp>
class BoundaryGridFunctionInterface
{
public:
//! \brief Export type traits of the boundary grid function.
typedef T Traits;
/** \brief Evaluate the GridFunction at given position
Evaluates components of the grid function at the given position and
returns these values in a vector.
\param[in] ig geometry of intersection with boundary
\param[in] x The position in entity-local coordinates
\param[out] y The result of the evaluation
*/
template<typename I>
inline void evaluate (const IntersectionGeometry<I>& ig,
const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
asImp().evaluate(ig,x,y);
}
//! get a reference to the GridView
inline const typename Traits::GridViewType& getGridView () const
{
return asImp().getGridView();
}
private:
Imp& asImp () {return static_cast<Imp &> (*this);}
const Imp& asImp () const {return static_cast<const Imp &>(*this);}
};
//! \addtogroup PDELab_FunctionAdapters Function Adapters
//! \{
/** \brief make a GridFunction from a Function
*
* \tparam G The GridView type
* \tparam T The function type
*/
template<typename G, typename T>
class FunctionToGridFunctionAdapter :
public TypeTree::LeafNode,
public GridFunctionInterface<GridFunctionTraits<
G,
typename T::Traits::RangeFieldType,
T::Traits::dimRange,
typename T::Traits::RangeType>,
FunctionToGridFunctionAdapter<G,T> >
{
public:
typedef GridFunctionTraits<G,
typename T::Traits::RangeFieldType,
T::Traits::dimRange,
typename T::Traits::RangeType> Traits;
dune_static_assert(
(is_same<typename T::Traits::DomainFieldType,
typename Traits::DomainFieldType>::value),
"GridView's and wrapped Functions DomainFieldType don't match");
dune_static_assert(
T::Traits::dimDomain==Traits::dimDomain,
"GridView's and wrapped Functions dimDomain don't match");
dune_static_assert(
(is_same<typename T::Traits::DomainType,
typename Traits::DomainType>::value),
"GridView's and wrapped Functions DomainType don't match");
/** \brief Create a FunctionToGridFunctionAdapter
*
* \param g_ The GridView
* \param t_ The function
*/
FunctionToGridFunctionAdapter (const G& g_, const T& t_) : g(g_), t(t_) {}
inline void evaluate (const typename Traits::ElementType& e,
const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
t.evaluate(e.geometry().global(x),y);
}
inline const typename Traits::GridViewType& getGridView () const
{
return g;
}
private:
const G& g;
const T& t;
};
/** \brief make a Function from a GridFunction
*
* \tparam GF The GridFunction type
*/
template<typename GF>
class GridFunctionToFunctionAdapter
: public FunctionInterface<FunctionTraits<typename GF::Traits::GridViewType::ctype,
GF::Traits::GridViewType::dimensionworld,
Dune::FieldVector<typename GF::Traits::GridViewType::ctype,
GF::Traits::GridViewType::dimensionworld
>,
typename GF::Traits::RangeFieldType,
GF::Traits::dimRange,
Dune::FieldVector<typename GF::Traits::RangeFieldType,
GF::Traits::dimRange>
>,
GridFunctionToFunctionAdapter<GF> >
{
public:
//! \brief Export type traits
typedef FunctionTraits<typename GF::Traits::GridViewType::ctype,
GF::Traits::GridViewType::dimensionworld,
Dune::FieldVector<typename GF::Traits::GridViewType::ctype,
GF::Traits::GridViewType::dimensionworld
>,
typename GF::Traits::RangeFieldType,
GF::Traits::dimRange,
Dune::FieldVector<typename GF::Traits::RangeFieldType,
GF::Traits::dimRange>
> Traits;
//! make a GridFunctionToFunctionAdapter
GridFunctionToFunctionAdapter(const GF &gf_)
: gf(gf_)
, hsearch(gf.getGridView().grid(), gf.getGridView().indexSet())
{ }
/** \brief Evaluate all basis function at given position
Evaluates all shape functions at the given position and returns
these values in a vector.
*/
inline void evaluate (const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
typename GF::Traits::GridViewType::Grid::Traits::template Codim<0>::EntityPointer
ep = hsearch.findEntity(x);
gf.evaluate(*ep, ep->geometry().local(x), y);
}
private:
const GF &gf;
const Dune::HierarchicSearch<typename GF::Traits::GridViewType::Grid,
typename GF::Traits::GridViewType::IndexSet> hsearch;
};
/** \brief make a Function in local coordinates from a Function in global coordinates
*
* \tparam T Type of the global function
* \tparam E Type of the grid's element
*/
template<typename T, typename E>
class GlobalFunctionToLocalFunctionAdapter :
public FunctionInterface<typename T::Traits,
GlobalFunctionToLocalFunctionAdapter<T,E> >
{
public:
typedef typename T::Traits Traits;
/** \brief Create a GlobalFunctionToLocalFunctionAdapter
*
* \param t_ Global function
* \param e_ Grid's element where the local function is defined
*/
GlobalFunctionToLocalFunctionAdapter (const T& t_, const E& e_) : t(t_), e(e_) {}
/** \brief Evaluate the local function at the given position
\param[in] x The position in local coordinates
\param[out] y The result of the evaluation
*/
inline void evaluate (const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
t.evaluate(e.geometry().global(x),y);
}
private:
const T& t;
const E& e;
};
/** \brief make a LocalFunction from a GridFunction using local coordinates
*
* \tparam T type of the GridFunction
*/
template<typename T> // T: GridFunction, E: Entity
class GridFunctionToLocalFunctionAdapter :
public FunctionInterface<typename T::Traits,
GridFunctionToLocalFunctionAdapter<T> >
{
public:
typedef typename T::Traits Traits;
/** \brief Create a GridFunctionToLocalFunctionAdapter
*
* \param t_ GridFunction
* \param e_ Grid's element where the local function is defined
*/
GridFunctionToLocalFunctionAdapter (const T& t_,
const typename Traits::ElementType& e_)
: t(t_), e(e_) {}
/** \brief Evaluate the local function at the given position
\param[in] x The position in local coordinates
\param[out] y The result of the evaluation
*/
inline void evaluate (const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
t.evaluate(e,x,y);
}
private:
const T& t;
const typename Traits::ElementType& e;
};
//! a Function maps x in DomainType to y in RangeType
template<class T>
class SelectComponentAdapter : public FunctionInterface<FunctionTraits<typename T::Traits::DomainFieldType,T::Traits::dimDomain,typename T::Traits::DomainType,typename T::Traits::RangeFieldType,1,Dune::FieldVector<typename T::Traits::RangeFieldType,1> > , SelectComponentAdapter<T> >
{
typedef FunctionInterface<FunctionTraits<typename T::Traits::DomainFieldType,T::Traits::dimDomain,typename T::Traits::DomainType,typename T::Traits::RangeFieldType,1,Dune::FieldVector<typename T::Traits::RangeFieldType,1> > , SelectComponentAdapter<T> > BaseT;
public:
//! \brief Export type traits
typedef typename BaseT::Traits Traits;
SelectComponentAdapter (const T& t_, int k_) : t(t_), k(k_) {}
/** \brief Evaluate all basis function at given position
Evaluates all shape functions at the given position and returns
these values in a vector.
*/
inline void evaluate (const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
typename T::Traits::RangeType Y;
t.evaluate(x,Y);
y = Y[k];
}
//! set component to be selected
void select (int k_)
{
k = k_;
}
private:
const T& t;
int k;
};
//! Takes a BoundaryGridFunction and acts as a single component
template<class T>
class BoundaryGridFunctionSelectComponentAdapter
: public BoundaryGridFunctionInterface<BoundaryGridFunctionTraits<typename T::Traits::GridViewType,
typename T::Traits::RangeFieldType,1,
Dune::FieldVector<typename T::Traits::RangeFieldType,1> > ,
BoundaryGridFunctionSelectComponentAdapter<T> >
{
typedef BoundaryGridFunctionInterface<BoundaryGridFunctionTraits<typename T::Traits::GridViewType,
typename T::Traits::RangeFieldType,1,
Dune::FieldVector<typename T::Traits::RangeFieldType,1> > ,
BoundaryGridFunctionSelectComponentAdapter<T> > BaseT;
public:
//! \brief Export type traits
typedef typename BaseT::Traits Traits;
BoundaryGridFunctionSelectComponentAdapter (const T& t_, int k_) : t(t_), k(k_) {}
/** \brief Evaluate all basis function at given position
Evaluates all shape functions at the given position and returns
these values in a vector.
*/
template<typename I>
inline void evaluate (const IntersectionGeometry<I>& ig,
const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
typename T::Traits::RangeType Y;
t.evaluate(ig,x,Y);
y = Y[k];
}
//! get a reference to the GridView
inline const typename Traits::GridViewType& getGridView () const
{
return t.getGridView();
}
//! set component to be selected
void select (int k_)
{
k = k_;
}
private:
const T& t;
int k;
};
//! \}
//============================
// Function tree
//============================
//! \addtogroup GridFunctionTree
//! \{
struct GridFunctionTag {};
/** \brief leaf of a function tree
*
* Classes derived from this class implement a \ref GridFunctionTree.
*
* \tparam T Traits class holding the functions signature
* \tparam Imp Class implementing the function. Imp must be derived from
* GridFunctionBase in some way (Barton-Nackman-Trick).
*/
template<class T, class Imp>
class GridFunctionBase
: public GridFunctionInterface<T,Imp>
, public TypeTree::LeafNode
{
public:
typedef GridFunctionTag ImplementationTag;
//! Type of the GridView
typedef typename T::GridViewType GridViewType;
};
/** \brief leaf of a function tree
*
* Classes derived from this class implement a \ref GridFunctionTree.
*
* \tparam T Traits class holding the functions signature
* \tparam Imp Class implementing the function. Imp must be derived from
* GridFunctionBase in some way (Barton-Nackman-Trick).
*/
template<class T, class Imp>
class BoundaryGridFunctionBase
: public BoundaryGridFunctionInterface<T,Imp>
, public TypeTree::LeafNode
{
public:
typedef GridFunctionTag ImplementationTag;
//! Type of the GridView
typedef typename T::GridViewType GridViewType;
};
/** \brief Visitor for Power- and CompositeGridFunctions calling
the setTime() method on the leafs of the corresponding
function trees.
\tparam Scalar type representing time.
*/
template<typename TT>
struct PowerCompositeSetTimeVisitor
: public TypeTree::TreeVisitor, public TypeTree::DynamicTraversal
{
TT time;
PowerCompositeSetTimeVisitor(const TT time_) : time(time_) {}
template<typename LeafNode, typename TreePath>
void leaf(LeafNode& node, TreePath treePath) const
{
node.setTime(time);
}
};
struct PowerGridFunctionTag {};
/** \brief product of identical functions
*
* This collects k instances of T in a \ref GridFunctionTree.
*
* \tparam T The type of the children of this node in the tree.
* \tparam k The number of children this node has.
*/
template<class T, std::size_t k>
class PowerGridFunction
: public TypeTree::PowerNode<T,k>
{
typedef TypeTree::PowerNode<T,k> BaseT;
public:
typedef PowerCompositeGridFunctionTraits<typename T::GridViewType> Traits;
typedef PowerGridFunctionTag ImplementationTag;
//! record the GridView
typedef typename T::GridViewType GridViewType;
//! Set the time in all leaf nodes of this function tree
template <typename TT>
void setTime(TT time){
PowerCompositeSetTimeVisitor<TT> visitor(time);
Dune::TypeTree::applyToTree(*this,visitor);
}
PowerGridFunction()
{}
//! Construct a PowerGridFunction with k clones of the function t
PowerGridFunction (T& t)
: BaseT(t) {}
/** \brief Initialize all children with different function objects
*
* This constructor is only available in the non-specialized version
*
* \param t Points to an array of pointers to function objects of type
* T. The function pointed to by the first pointer will be
* used to initialize the first child, the second pointer for
* the second child and so on.
*/
// TODO: PowerGridFunction (T** t) : ...
#ifdef DOXYGEN
/** \brief Initialize all children with different function objects
*
* Currently there exist specializations for 2 <= k <= 9. Each
* specialization has a constructor which takes the initializers for
* its children as arguments.
*
* @param t0 The initializer for the first child.
* @param t1 The initializer for the second child.
* @param ... more initializers
*/
PowerGridFunction (T& t0, T& t1, ...)
{
}
#else
PowerGridFunction (T& c0,
T& c1)
: BaseT(c0,c1)
{
}
PowerGridFunction (T& c0,
T& c1,
T& c2)
: BaseT(c0,c1,c2)
{
}
PowerGridFunction (T& c0,
T& c1,
T& c2,
T& c3)
: BaseT(c0,c1,c2,c3)
{
}
PowerGridFunction (T& c0,
T& c1,
T& c2,
T& c3,
T& c4)
: BaseT(c0,c1,c2,c3,c4)
{
}
PowerGridFunction (T& c0,
T& c1,
T& c2,
T& c3,
T& c4,
T& c5)
: BaseT(c0,c1,c2,c3,c4,c5)
{
}
PowerGridFunction (T& c0,
T& c1,
T& c2,
T& c3,
T& c4,
T& c5,
T& c6)
: BaseT(c0,c1,c2,c3,c4,c5,c6)
{
}
PowerGridFunction (T& c0,
T& c1,
T& c2,
T& c3,
T& c4,
T& c5,
T& c6,
T& c7)
: BaseT(c0,c1,c2,c3,c4,c5,c6,c7)
{
}
PowerGridFunction (T& c0,
T& c1,
T& c2,
T& c3,
T& c4,
T& c5,
T& c6,
T& c7,
T& c8)
: BaseT(c0,c1,c2,c3,c4,c5,c6,c7,c8)
{
}
PowerGridFunction (T& c0,
T& c1,
T& c2,
T& c3,
T& c4,
T& c5,
T& c6,
T& c7,
T& c8,
T& c9)
: BaseT(c0,c1,c2,c3,c4,c5,c6,c7,c8,c9)
{
}
#endif // DOXYGEN
};
struct CompositeGridFunctionTag {};
/** \brief composite functions
*
* Collect instances of possibly different function types Tn within a
* \ref GridFunctionTree. This impolements a \ref GridFunctionTree
*
* \tparam Tn The base types. Tn==EmptyChild means that slot n is
* unused. Currently, up to 9 slots are supported, making 8
* the maximum n.
*/
template<DUNE_TYPETREE_COMPOSITENODE_TEMPLATE_CHILDREN>
class CompositeGridFunction
: public DUNE_TYPETREE_COMPOSITENODE_BASETYPE
{
typedef DUNE_TYPETREE_COMPOSITENODE_BASETYPE BaseT;
public:
typedef CompositeGridFunctionTag ImplementationTag;
typedef PowerCompositeGridFunctionTraits<typename BaseT::template Child<0>::Type::GridViewType> Traits;
//! record the GridView
typedef typename BaseT::template Child<0>::Type::GridViewType GridViewType;
CompositeGridFunction()
{}
CompositeGridFunction (DUNE_TYPETREE_COMPOSITENODE_CONSTRUCTOR_SIGNATURE)
: BaseT(DUNE_TYPETREE_COMPOSITENODE_CHILDVARIABLES_THROUGH_FUNCTION(TypeTree::assertGridViewType<typename BaseT::template Child<0>::Type>))
{
}
//! Set the time in all leaf nodes of this function tree
template <typename TT>
void setTime(TT time){
PowerCompositeSetTimeVisitor<TT> visitor(time);
Dune::TypeTree::applyToTree(*this,visitor);
}
#ifdef DOXYGEN
/** \brief Initialize all children
*
* @param t0 The initializer for the first child.
* @param t1 The initializer for the second child.
* @param ... more initializers
*
* The actual number of arguments for this constructor corresponds to
* the number of slots used in the template parameter list of the class.
*/
CompositeGridFunction (T0& t0, T1& t1, ...) {}
#endif //DOXYGEN
};
//========================================================
// helper template to turn an ordinary GridFunction into a
// GridFunctionTree leaf
//========================================================
//! Turn an ordinary GridFunction into a GridFunctionTree leaf
/**
* \tparam Imp Class implementing the function.
*/
template<class Imp>
class GridFunctionBaseAdapter
: public GridFunctionBase<typename Imp::Traits,
GridFunctionBaseAdapter<Imp> >
{
const Imp &imp;
public:
//! construct a GridFunctionBaseAdapter
/**
* \param imp_ The underlying ordinary GridFunction. A reference to
* this Object is stored, so the object must be valid for as
* long as this GridFunctionBaseAdapter is used.
*/
GridFunctionBaseAdapter(const Imp& imp_)
: imp(imp_)
{ }
//! Evaluate the GridFunction at given position
/**
* Evaluates components of the grid function at the given position and
* returns these values in a vector.
*
* \param[in] e The entity to evaluate on
* \param[in] x The position in entity-local coordinates
* \param[out] y The result of the evaluation
*/
inline void evaluate (const typename Imp::Traits::ElementType& e,
const typename Imp::Traits::DomainType& x,
typename Imp::Traits::RangeType& y) const
{
imp.evaluate(e,x,y);
}
//! get a reference to the GridView
inline const typename Imp::Traits::GridViewType& getGridView () const
{
return imp.getGridView();
}
};
//=======================================
// helper template for analytic functions
//=======================================
//! function signature for analytic functions on a grid
template<typename GV, typename RF, int m>
struct AnalyticGridFunctionTraits
: public GridFunctionTraits<GV, RF, m, Dune::FieldVector<RF,m> >
{
};
/** \brief an analytic grid function
*
* This is a convenience class which eases the creation of analytic
* GridFunctions. Classes derived from it need only implement a method
* evaluateGlobal(const Dune::FieldVector<typename Traits::DomainFieldType,GV::dimensionworld> &x_global, RangeType &y) to have a
* full-fledged GridFunction.
*
* \tparam T The Traits class
* \tparam Imp Class implementing the function. Imp must be derived from
* AnalyticGridFunctionBase in some way
* (Barton-Nackman-Trick).
*/
template<typename T, typename Imp>
class AnalyticGridFunctionBase
: public GridFunctionBase<T,AnalyticGridFunctionBase<T,Imp> >
{
public:
typedef T Traits;
//! Construct an Analytic GridFunctionBase given a GridView g_
AnalyticGridFunctionBase (const typename Traits::GridViewType& g_) : g(g_) {}
//! \copydoc GridFunctionBase::evaluate()
inline void evaluate (const typename Traits::ElementType& e,
const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
asImp().evaluateGlobal(e.geometry().global(x),y);
}
inline const typename Traits::GridViewType& getGridView () const
{
return g;
}
private:
typename Traits::GridViewType g;
Imp& asImp () {return static_cast<Imp &> (*this);}
const Imp& asImp () const {return static_cast<const Imp &>(*this);}
};
// Adapter takes a vector-valued grid function and provides evaluation
// of normal flux on the interior of faces.
template<typename T>
class NormalFluxGridFunctionAdapter
: public Dune::PDELab::GridFunctionInterface<Dune::PDELab::GridFunctionTraits<typename T::Traits::GridViewType,
typename T::Traits::RangeFieldType,
1,
Dune::FieldVector<typename T::Traits::RangeFieldType,1>
>,
NormalFluxGridFunctionAdapter<T> >
, public TypeTree::LeafNode
{
public:
typedef Dune::PDELab::GridFunctionTraits<typename T::Traits::GridViewType,typename T::Traits::RangeFieldType,1,Dune::FieldVector<typename T::Traits::RangeFieldType,1> > Traits;
typedef Dune::PDELab::GridFunctionInterface<Traits,NormalFluxGridFunctionAdapter<T> > BaseT;
NormalFluxGridFunctionAdapter (const T& t_) : t(stackobject_to_shared_ptr(t_)) {}
inline void evaluate (const typename Traits::ElementType& e,
const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
// ensure correct size
dune_static_assert((static_cast<int>(T::Traits::GridViewType::dimension)==static_cast<int>(T::Traits::dimRange)),"number of components must equal dimension");
// evaluate velocity
typename T::Traits::RangeType v;
t->evaluate(e,x,v);
// implementation only handles triangles so far
if (!e.geometry().type().isTriangle())
DUNE_THROW(Dune::NotImplemented, "only implemented for triangles");
// start and end corner in local numbering
int n0, n1;
typename Traits::DomainType nu;
// determine outer unit normal
if (std::abs(x[0])<1E-10)
{
// edge 1
n0 = 2;
n1 = 0;
nu = e.geometry().corner(n1);
nu -= e.geometry().corner(n0);
typename Traits::DomainFieldType temp = nu[0];
nu[0] = nu[1];
nu[1] = -temp;
nu /= nu.two_norm();
y = v[0]*nu[0]+v[1]*nu[1];
return;
}
if (std::abs(x[1])<1E-10)
{
// edge 2
n0 = 0;
n1 = 1;
nu = e.geometry().corner(n1);
nu -= e.geometry().corner(n0);
typename Traits::DomainFieldType temp = nu[0];
nu[0] = nu[1];
nu[1] = -temp;
nu /= nu.two_norm();
y = v[0]*nu[0]+v[1]*nu[1];
return;
}
if (std::abs(x[0]+x[1]-1.0)<1E-10)
{
// edge 0
n0 = 1;
n1 = 2;
nu = e.geometry().corner(n1);
nu -= e.geometry().corner(n0);
typename Traits::DomainFieldType temp = nu[0];
nu[0] = nu[1];
nu[1] = -temp;
nu /= nu.two_norm();
y = v[0]*nu[0]+v[1]*nu[1];
return;
}
DUNE_THROW(Dune::Exception, "x needs to be on an edge");
}
//! get a reference to the GridView
inline const typename Traits::GridViewType& getGridView () const
{
return t->getGridView();
}
private:
shared_ptr<T const> t;
};
// Adapter takes a vector-valued grid function and applies
// backward Piola transformation on each element
template<typename T>
class PiolaBackwardAdapter
: public Dune::PDELab::GridFunctionInterface<typename T::Traits,PiolaBackwardAdapter<T> >
, public TypeTree::LeafNode
{
public:
typedef typename T::Traits::GridViewType GridViewType;
typedef typename T::Traits Traits;
typedef Dune::PDELab::GridFunctionInterface<Traits,PiolaBackwardAdapter<T> > BaseT;
PiolaBackwardAdapter (const T& t_) : t(stackobject_to_shared_ptr(t_)) {}
inline void evaluate (const typename Traits::ElementType& e,
const typename Traits::DomainType& x,
typename Traits::RangeType& y) const
{
// evaluate velocity
typename T::Traits::RangeType v;
t->evaluate(e,x,v);
// apply Piola transformation
typename Traits::ElementType::Geometry::JacobianInverseTransposed
J = e.geometry().jacobianInverseTransposed(x);
y = 0;
J.umtv(v,y);
y *= e.geometry().integrationElement(x);
}
//! get a reference to the GridView
inline const typename Traits::GridViewType& getGridView () const
{
return t->getGridView();
}
private:
shared_ptr<T const> t;
};
//==========================
// template metaprograms
//==========================
namespace {
//! implement VisitingFunctor for vtkwriter_tree_addvertexdata
template<typename VTKWriter>
struct AddGridFunctionsToVTKWriter
: public TypeTree::TreeVisitor
, public TypeTree::DynamicTraversal
{
VTKWriter& w;
const std::string s;
AddGridFunctionsToVTKWriter(VTKWriter& w_, const std::string & s_) :
w(w_), s(s_) {}
template<typename T, typename TreePath>
void leaf(const T& t, TreePath treePath) {
std::stringstream name;
name << s;
for (std::size_t i=0; i < treePath.size(); ++i)
name << "_" << treePath.element(i);
w.addVertexData(new VTKGridFunctionAdapter<T>(t,name.str()));
}
};
} // anonymous namespace
/** \brief add vertex data from a \ref GridFunctionTree to a VTKWriter
*
* \tparam GV The GridView for the VTKWriter
* \tparam T The \ref GridFunctionTree
*/
template<typename GV, typename T>
void vtkwriter_tree_addvertexdata (Dune::VTKWriter<GV>& w, const T& t, std::string s = "data")
{
AddGridFunctionsToVTKWriter<Dune::VTKWriter<GV> > visitor(w,s);
TypeTree::applyToTree(t,visitor);
}
//! \} GridFunctionTree
//! \} Function
} // namespace PDELab
} // namespace Dune
#endif
|