This file is indexed.

/usr/include/dune/pdelab/common/function.hh is in libdune-pdelab-dev 2.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
//-*- tab-width: 4; indent-tabs-mode: nil -*-
#ifndef DUNE_PDELAB_FUNCTION_HH
#define DUNE_PDELAB_FUNCTION_HH

#include <iostream>
#include <sstream>

#include <dune/common/deprecated.hh>
#include <dune/common/static_assert.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>

#include <dune/grid/utility/hierarchicsearch.hh>

#include <dune/typetree/typetree.hh>

#include "vtkexport.hh"
#include "geometrywrapper.hh"

namespace Dune {
  namespace PDELab {

    //! \addtogroup PDELab_Function Function
    //! \ingroup PDELab
    //! \{

    //! traits class holding function signature, same as in local function
    //! \tparam DF The numeric type of the field representing the domain.
    //! \tparam dimension of the domain.
    //! \tparam D The type of the domain.
    //! \tparam m The dimension of the range.
    //! \tparam RF The numeric type of the field representing the range.
    //! \tparam R The type of the range.
    template<class DF, int n, class D, class RF, int m, class R>
    struct FunctionTraits
    {
      //! \brief Export type for domain field
      typedef DF DomainFieldType;

      //! \brief Enum for domain dimension
      enum {
        //! \brief dimension of the domain
        dimDomain = n
      };

      //! \brief domain type in dim-size coordinates
      typedef D DomainType;

      //! \brief Export type for range field
      typedef RF RangeFieldType;

      //! \brief Enum for range dimension
      enum {
        //! \brief dimension of the range
        dimRange = m
      };

      //! \brief range type
      typedef R RangeType;
    };

    //! \brief a Function that maps x in DomainType to y in RangeType
    //! \tparam T The type of the function traits
    //! \tparam Imp The type implementing the interface.
    template<class T, class Imp>
    class FunctionInterface
    {
    public:
      //! \brief Export type traits
      typedef T Traits;

      /** \brief Evaluate all basis function at given position

          Evaluates all shape functions at the given position and returns
          these values in a vector.
      */
      inline void evaluate (const typename Traits::DomainType& x,
                            typename Traits::RangeType& y) const
	  {
            asImp().evaluate(x,y);
	  }

    private:
      Imp& asImp () {return static_cast<Imp &> (*this);}
      const Imp& asImp () const {return static_cast<const Imp &>(*this);}
    };

    //! \brief Default class for additional methods in instationary functions
    class InstationaryFunctionDefaults
    {
    public:
      //! set time for subsequent evaluation
      /**
       * This method sets the time for subsequent calls to any of the
       * evaluation methods.
       *
       * \note This default method does nothing, it just ensures setTime() can
       *       be called without ill effects.
       * \note Function implementation are free to restrict the types of
       *       acceptable parameters.  This should be noted in the function
       *       classes documentation.
       */
      template<typename Time>
      inline void setTime(Time t)
      { }
    };

    //! \brief GV The type of the grid view the function lives on.
    template<typename GV>
    struct PowerCompositeGridFunctionTraits
    {
      //! \brief The type of the grid view the function lives on.
      typedef GV GridViewType;

	  //! \brief codim 0 entity
	  typedef typename GV::Traits::template Codim<0>::Entity ElementType;

    };


    //! Mixin base class for specifying output hints to I/O routines like VTK.
    class GridFunctionOutputParameters
    {

    public:

      //! Namespace for output-related data types and enums.
      struct Output
      {
        //! The type of the data set.
        /**
         * This information can be used by a VTKWriter to pick the correct
         * VTK data set type.
         */
        enum DataSetType
          {
            vertexData, //!< A data set with vertex values.
            cellData    //!< A data set with cell values.
          };
      };

      //! Standard constructor.
      /**
       * \param dataSetType The type of the data set represented by this function.
       */
      GridFunctionOutputParameters(Output::DataSetType dataSetType = Output::vertexData)
        : _dataSetType(dataSetType)
      {}

      //! Return the data set type of this function.
      Output::DataSetType dataSetType() const
      {
        return _dataSetType;
      }

      //! Set the data set type of this function.
      void setDataSetType(Output::DataSetType dataSetType)
      {
        _dataSetType = dataSetType;
      }

    private:

      Output::DataSetType _dataSetType;

    };

    //! \brief traits class holding the function signature, same as in local function
    //! \brief GV The type of the grid view the function lives on.
    //! \brief RF The numeric type used in the range of the function.
    //! \brief m The dimension of the range.
    //! \tparam R The numeric type of the field representing the range.
	template<class GV, class RF, int m, class R>
	struct GridFunctionTraits
	  : public FunctionTraits<typename GV::Grid::ctype, GV::dimension,
				    		  Dune::FieldVector<typename GV::Grid::ctype,
                                                GV::dimension>,
							  RF, m, R>
      , public PowerCompositeGridFunctionTraits<GV>
	{
	};

    //! \brief a GridFunction maps x in DomainType to y in RangeType
	template<class T, class Imp>
	class GridFunctionInterface
      : public GridFunctionOutputParameters
	{
	public:
	  //! \brief Export type traits
	  typedef T Traits;

      GridFunctionInterface(Output::DataSetType dataSetType = Output::vertexData)
        : GridFunctionOutputParameters(dataSetType)
      {}

	  /** \brief Evaluate the GridFunction at given position

		  Evaluates components of the grid function at the given position and
		  returns these values in a vector.

          \param[in]  e The entity to evaluate on
          \param[in]  x The position in entity-local coordinates
          \param[out] y The result of the evaluation
	  */
	  inline void evaluate (const typename Traits::ElementType& e,
							const typename Traits::DomainType& x,
							typename Traits::RangeType& y) const
	  {
		asImp().evaluate(e,x,y);
	  }

      //! \brief get a reference to the GridView
	  inline const typename Traits::GridViewType& getGridView () const
	  {
		return asImp().getGridView();
	  }

	private:
	  Imp& asImp () {return static_cast<Imp &> (*this);}
	  const Imp& asImp () const {return static_cast<const Imp &>(*this);}
	};

    //! \brief traits class holding function signature, same as in local function
    //! \tparam GV The type of the grid view the function lives on.
    //! \tparam RF The numeric type of the field representing the range.
    //! \tparam m The dimension of the range.
    //! \tparam R The type of the range.
	template<class GV, class RF, int m, class R>
	struct BoundaryGridFunctionTraits
	  : public FunctionTraits<typename GV::Grid::ctype, GV::dimension-1,
				    		  Dune::FieldVector<typename GV::Grid::ctype,
                                                GV::dimension-1>,
							  RF, m, R>
	{
	  //! \brief Export grid view type in addition
	  typedef GV GridViewType;
	};


    //! \brief A BoundaryGridFunction allows evaluation on boundary intersections
    // \tparam T The type of the BoundaryGridFunctionTraits.
    // \tparam Imp The type of the implementing class.
	template<class T, class Imp>
	class BoundaryGridFunctionInterface
	{
	public:
      //! \brief Export type traits of the boundary grid function.
	  typedef T Traits;

	  /** \brief Evaluate the GridFunction at given position

		  Evaluates components of the grid function at the given position and
		  returns these values in a vector.

          \param[in]  ig geometry of intersection with boundary
          \param[in]  x The position in entity-local coordinates
          \param[out] y The result of the evaluation
	  */
      template<typename I>
	  inline void evaluate (const IntersectionGeometry<I>& ig,
							const typename Traits::DomainType& x,
							typename Traits::RangeType& y) const
	  {
		asImp().evaluate(ig,x,y);
	  }

      //! get a reference to the GridView
	  inline const typename Traits::GridViewType& getGridView () const
	  {
		return asImp().getGridView();
	  }

	private:
	  Imp& asImp () {return static_cast<Imp &> (*this);}
	  const Imp& asImp () const {return static_cast<const Imp &>(*this);}
	};

    //! \addtogroup PDELab_FunctionAdapters Function Adapters
    //! \{

	/** \brief make a GridFunction from a Function
     *
     *  \tparam G The GridView type
     *  \tparam T The function type
     */
	template<typename G, typename T>
	class FunctionToGridFunctionAdapter :
      public TypeTree::LeafNode,
	  public GridFunctionInterface<GridFunctionTraits<
									 G,
									 typename T::Traits::RangeFieldType,
									 T::Traits::dimRange,
									 typename T::Traits::RangeType>,
								   FunctionToGridFunctionAdapter<G,T> >
	{
	public:
	  typedef GridFunctionTraits<G,
								 typename T::Traits::RangeFieldType,
								 T::Traits::dimRange,
								 typename T::Traits::RangeType> Traits;
      dune_static_assert(
       (is_same<typename T::Traits::DomainFieldType,
                typename Traits::DomainFieldType>::value),
       "GridView's and wrapped Functions DomainFieldType don't match");
      dune_static_assert(
       T::Traits::dimDomain==Traits::dimDomain,
       "GridView's and wrapped Functions dimDomain don't match");
      dune_static_assert(
       (is_same<typename T::Traits::DomainType,
                typename Traits::DomainType>::value),
       "GridView's and wrapped Functions DomainType don't match");

      /** \brief Create a FunctionToGridFunctionAdapter
       *
       *  \param g_ The GridView
       *  \param t_ The function
       */
	  FunctionToGridFunctionAdapter (const G& g_, const T& t_) : g(g_), t(t_) {}

	  inline void evaluate (const typename Traits::ElementType& e,
							const typename Traits::DomainType& x,
							typename Traits::RangeType& y) const
	  {
		t.evaluate(e.geometry().global(x),y);
	  }

	  inline const typename Traits::GridViewType& getGridView () const
	  {
		return g;
	  }

	private:
	  const G& g;
	  const T& t;
	};

	/** \brief make a Function from a GridFunction
     *
     *  \tparam GF The GridFunction type
     */
	template<typename GF>
	class GridFunctionToFunctionAdapter
      : public FunctionInterface<FunctionTraits<typename GF::Traits::GridViewType::ctype,
                                                GF::Traits::GridViewType::dimensionworld,
                                                Dune::FieldVector<typename GF::Traits::GridViewType::ctype,
                                                                  GF::Traits::GridViewType::dimensionworld
                                                                  >,
                                                typename GF::Traits::RangeFieldType,
                                                GF::Traits::dimRange,
                                                Dune::FieldVector<typename GF::Traits::RangeFieldType,
                                                                  GF::Traits::dimRange>
                                                >,
                                 GridFunctionToFunctionAdapter<GF> >
	{
	public:
	  //! \brief Export type traits
	  typedef FunctionTraits<typename GF::Traits::GridViewType::ctype,
                             GF::Traits::GridViewType::dimensionworld,
                             Dune::FieldVector<typename GF::Traits::GridViewType::ctype,
                                               GF::Traits::GridViewType::dimensionworld
                                               >,
                             typename GF::Traits::RangeFieldType,
                             GF::Traits::dimRange,
                             Dune::FieldVector<typename GF::Traits::RangeFieldType,
                                               GF::Traits::dimRange>
                             > Traits;

      //! make a GridFunctionToFunctionAdapter
      GridFunctionToFunctionAdapter(const GF &gf_)
        : gf(gf_)
        , hsearch(gf.getGridView().grid(), gf.getGridView().indexSet())
      { }

	  /** \brief Evaluate all basis function at given position

		  Evaluates all shape functions at the given position and returns
		  these values in a vector.
	  */
	  inline void evaluate (const typename Traits::DomainType& x,
							typename Traits::RangeType& y) const
	  {
        typename GF::Traits::GridViewType::Grid::Traits::template Codim<0>::EntityPointer
          ep = hsearch.findEntity(x);
        gf.evaluate(*ep, ep->geometry().local(x), y);
	  }

	private:
      const GF &gf;
      const Dune::HierarchicSearch<typename GF::Traits::GridViewType::Grid,
                                   typename GF::Traits::GridViewType::IndexSet> hsearch;
	};


	/** \brief make a Function in local coordinates from a Function in global coordinates
     *
     *  \tparam T Type of the global function
     *  \tparam E Type of the grid's element
     */
	template<typename T, typename E>
	class GlobalFunctionToLocalFunctionAdapter :
	  public FunctionInterface<typename T::Traits,
							   GlobalFunctionToLocalFunctionAdapter<T,E> >
	{
	public:
	  typedef typename T::Traits Traits;

      /** \brief Create a GlobalFunctionToLocalFunctionAdapter
       *
       *  \param t_ Global function
       *  \param e_ Grid's element where the local function is defined
       */
	  GlobalFunctionToLocalFunctionAdapter (const T& t_, const E& e_) : t(t_), e(e_) {}

	  /** \brief Evaluate the local function at the given position

          \param[in]  x The position in local coordinates
          \param[out] y The result of the evaluation
	  */
	  inline void evaluate (const typename Traits::DomainType& x,
							typename Traits::RangeType& y) const
	  {
		t.evaluate(e.geometry().global(x),y);
	  }

	private:
	  const T& t;
	  const E& e;
	};


    /** \brief make a LocalFunction from a GridFunction using local coordinates
     *
     *  \tparam T type of the GridFunction
     */
	template<typename T> // T: GridFunction, E: Entity
	class GridFunctionToLocalFunctionAdapter :
	  public FunctionInterface<typename T::Traits,
							   GridFunctionToLocalFunctionAdapter<T> >
	{
	public:
	  typedef typename T::Traits Traits;

      /** \brief Create a GridFunctionToLocalFunctionAdapter
       *
       *  \param t_ GridFunction
       *  \param e_ Grid's element where the local function is defined
       */
	  GridFunctionToLocalFunctionAdapter (const T& t_,
										  const typename Traits::ElementType& e_)
		: t(t_), e(e_) {}

	  /** \brief Evaluate the local function at the given position

          \param[in]  x The position in local coordinates
          \param[out] y The result of the evaluation
	  */
	  inline void evaluate (const typename Traits::DomainType& x,
							typename Traits::RangeType& y) const
	  {
		t.evaluate(e,x,y);
	  }

	private:
	  const T& t;
	  const typename Traits::ElementType& e;
	};


	//! a Function maps x in DomainType to y in RangeType
	template<class T>
	class SelectComponentAdapter : public FunctionInterface<FunctionTraits<typename T::Traits::DomainFieldType,T::Traits::dimDomain,typename T::Traits::DomainType,typename T::Traits::RangeFieldType,1,Dune::FieldVector<typename T::Traits::RangeFieldType,1> > , SelectComponentAdapter<T> >
	{
      typedef FunctionInterface<FunctionTraits<typename T::Traits::DomainFieldType,T::Traits::dimDomain,typename T::Traits::DomainType,typename T::Traits::RangeFieldType,1,Dune::FieldVector<typename T::Traits::RangeFieldType,1> > , SelectComponentAdapter<T> > BaseT;
	public:
	  //! \brief Export type traits
	  typedef typename BaseT::Traits Traits;

      SelectComponentAdapter (const T& t_, int k_) : t(t_), k(k_) {}

	  /** \brief Evaluate all basis function at given position

		  Evaluates all shape functions at the given position and returns
		  these values in a vector.
	  */
	  inline void evaluate (const typename Traits::DomainType& x,
							typename Traits::RangeType& y) const
	  {
        typename T::Traits::RangeType Y;
        t.evaluate(x,Y);
        y = Y[k];
	  }

      //! set component to be selected
      void select (int k_)
      {
        k = k_;
      }

	private:
      const T& t;
      int k;
	};

	//! Takes a BoundaryGridFunction and acts as a single component
	template<class T>
	class BoundaryGridFunctionSelectComponentAdapter
      : public BoundaryGridFunctionInterface<BoundaryGridFunctionTraits<typename T::Traits::GridViewType,
                                                                        typename T::Traits::RangeFieldType,1,
                                                                        Dune::FieldVector<typename T::Traits::RangeFieldType,1> > ,
                                             BoundaryGridFunctionSelectComponentAdapter<T> >
	{
      typedef BoundaryGridFunctionInterface<BoundaryGridFunctionTraits<typename T::Traits::GridViewType,
                                                                       typename T::Traits::RangeFieldType,1,
                                                                       Dune::FieldVector<typename T::Traits::RangeFieldType,1> > ,
                                            BoundaryGridFunctionSelectComponentAdapter<T> > BaseT;
    public:
	  //! \brief Export type traits
	  typedef typename BaseT::Traits Traits;

      BoundaryGridFunctionSelectComponentAdapter (const T& t_, int k_) : t(t_), k(k_) {}

	  /** \brief Evaluate all basis function at given position

		  Evaluates all shape functions at the given position and returns
		  these values in a vector.
	  */
      template<typename I>
	  inline void evaluate (const IntersectionGeometry<I>& ig,
							const typename Traits::DomainType& x,
							typename Traits::RangeType& y) const
	  {
        typename T::Traits::RangeType Y;
        t.evaluate(ig,x,Y);
        y = Y[k];
	  }

      //! get a reference to the GridView
	  inline const typename Traits::GridViewType& getGridView () const
	  {
		return t.getGridView();
	  }


      //! set component to be selected
      void select (int k_)
      {
        k = k_;
      }

	private:
      const T& t;
      int k;
	};

    //! \}

	//============================
	// Function tree
	//============================

    //! \addtogroup GridFunctionTree
    //! \{

    struct GridFunctionTag {};

	/** \brief leaf of a function tree
     *
     *  Classes derived from this class implement a \ref GridFunctionTree.
     *
     *  \tparam T   Traits class holding the functions signature
     *  \tparam Imp Class implementing the function.  Imp must be derived from
     *              GridFunctionBase in some way (Barton-Nackman-Trick).
     */
	template<class T, class Imp>
	class GridFunctionBase
      : public GridFunctionInterface<T,Imp>
      , public TypeTree::LeafNode
	{
	public:
      typedef GridFunctionTag ImplementationTag;
      //! Type of the GridView
	  typedef typename T::GridViewType GridViewType;
	};


	/** \brief leaf of a function tree
     *
     *  Classes derived from this class implement a \ref GridFunctionTree.
     *
     *  \tparam T   Traits class holding the functions signature
     *  \tparam Imp Class implementing the function.  Imp must be derived from
     *              GridFunctionBase in some way (Barton-Nackman-Trick).
     */
	template<class T, class Imp>
	class BoundaryGridFunctionBase
      : public BoundaryGridFunctionInterface<T,Imp>
      , public TypeTree::LeafNode
	{
	public:
      typedef GridFunctionTag ImplementationTag;
      //! Type of the GridView
	  typedef typename T::GridViewType GridViewType;
	};


    /** \brief Visitor for Power- and CompositeGridFunctions calling
        the setTime() method on the leafs of the corresponding
        function trees.

        \tparam Scalar type representing time.
    */
    template<typename TT>
    struct PowerCompositeSetTimeVisitor
      : public TypeTree::TreeVisitor, public TypeTree::DynamicTraversal
    {
      TT time;
      PowerCompositeSetTimeVisitor(const TT time_) : time(time_) {}

      template<typename LeafNode, typename TreePath>
      void leaf(LeafNode& node, TreePath treePath) const
      {
        node.setTime(time);
      }
    };

    struct PowerGridFunctionTag {};

	/** \brief product of identical functions
     *
     *  This collects k instances of T in a \ref GridFunctionTree.
     *
     *  \tparam T The type of the children of this node in the tree.
     *  \tparam k The number of children this node has.
     */
	template<class T, std::size_t k>
	class PowerGridFunction
      : public TypeTree::PowerNode<T,k>
	{

      typedef TypeTree::PowerNode<T,k> BaseT;

	public:

      typedef PowerCompositeGridFunctionTraits<typename T::GridViewType> Traits;

      typedef PowerGridFunctionTag ImplementationTag;

      //! record the GridView
	  typedef typename T::GridViewType GridViewType;

      //! Set the time in all leaf nodes of this function tree
      template <typename TT>
      void setTime(TT time){
        PowerCompositeSetTimeVisitor<TT> visitor(time);
        Dune::TypeTree::applyToTree(*this,visitor);
      }

      PowerGridFunction()
      {}

      //! Construct a PowerGridFunction with k clones of the function t
	  PowerGridFunction (T& t)
        : BaseT(t) {}

      /** \brief Initialize all children with different function objects
       *
       *  This constructor is only available in the non-specialized version
       *
       *  \param t Points to an array of pointers to function objects of type
       *           T.  The function pointed to by the first pointer will be
       *           used to initialize the first child, the second pointer for
       *           the second child and so on.
       */
	  // TODO: PowerGridFunction (T** t) : ...

#ifdef DOXYGEN
      /** \brief Initialize all children with different function objects
       *
       *  Currently there exist specializations for 2 <= k <= 9.  Each
       *  specialization has a constructor which takes the initializers for
       *  its children as arguments.
       *
       *  @param t0 The initializer for the first child.
       *  @param t1 The initializer for the second child.
       *  @param ... more initializers
       */
      PowerGridFunction (T& t0, T& t1, ...)
      {
      }

#else

      PowerGridFunction (T& c0,
                         T& c1)
        : BaseT(c0,c1)
      {
      }

      PowerGridFunction (T& c0,
                         T& c1,
                         T& c2)
        : BaseT(c0,c1,c2)
      {
      }

      PowerGridFunction (T& c0,
                         T& c1,
                         T& c2,
                         T& c3)
        : BaseT(c0,c1,c2,c3)
      {
      }

      PowerGridFunction (T& c0,
                         T& c1,
                         T& c2,
                         T& c3,
                         T& c4)
        : BaseT(c0,c1,c2,c3,c4)
      {
      }

      PowerGridFunction (T& c0,
                         T& c1,
                         T& c2,
                         T& c3,
                         T& c4,
                         T& c5)
        : BaseT(c0,c1,c2,c3,c4,c5)
      {
      }

      PowerGridFunction (T& c0,
                         T& c1,
                         T& c2,
                         T& c3,
                         T& c4,
                         T& c5,
                         T& c6)
        : BaseT(c0,c1,c2,c3,c4,c5,c6)
      {
      }

      PowerGridFunction (T& c0,
                         T& c1,
                         T& c2,
                         T& c3,
                         T& c4,
                         T& c5,
                         T& c6,
                         T& c7)
        : BaseT(c0,c1,c2,c3,c4,c5,c6,c7)
      {
      }

      PowerGridFunction (T& c0,
                         T& c1,
                         T& c2,
                         T& c3,
                         T& c4,
                         T& c5,
                         T& c6,
                         T& c7,
                         T& c8)
        : BaseT(c0,c1,c2,c3,c4,c5,c6,c7,c8)
      {
      }

      PowerGridFunction (T& c0,
                         T& c1,
                         T& c2,
                         T& c3,
                         T& c4,
                         T& c5,
                         T& c6,
                         T& c7,
                         T& c8,
                         T& c9)
        : BaseT(c0,c1,c2,c3,c4,c5,c6,c7,c8,c9)
      {
      }

#endif // DOXYGEN
	};

    struct CompositeGridFunctionTag {};

    /** \brief composite functions
     *
     *  Collect instances of possibly different function types Tn within a
     *  \ref GridFunctionTree.  This impolements a \ref GridFunctionTree
     *
     *  \tparam Tn The base types.  Tn==EmptyChild means that slot n is
     *             unused.  Currently, up to 9 slots are supported, making 8
     *             the maximum n.
     */
	template<DUNE_TYPETREE_COMPOSITENODE_TEMPLATE_CHILDREN>
	class CompositeGridFunction
	  : public DUNE_TYPETREE_COMPOSITENODE_BASETYPE
	{

      typedef DUNE_TYPETREE_COMPOSITENODE_BASETYPE BaseT;

	public:

      typedef CompositeGridFunctionTag ImplementationTag;

      typedef PowerCompositeGridFunctionTraits<typename BaseT::template Child<0>::Type::GridViewType> Traits;

      //! record the GridView
	  typedef typename BaseT::template Child<0>::Type::GridViewType GridViewType;

      CompositeGridFunction()
      {}

	  CompositeGridFunction (DUNE_TYPETREE_COMPOSITENODE_CONSTRUCTOR_SIGNATURE)
		: BaseT(DUNE_TYPETREE_COMPOSITENODE_CHILDVARIABLES_THROUGH_FUNCTION(TypeTree::assertGridViewType<typename BaseT::template Child<0>::Type>))
	  {
	  }

      //! Set the time in all leaf nodes of this function tree
      template <typename TT>
      void setTime(TT time){
        PowerCompositeSetTimeVisitor<TT> visitor(time);
        Dune::TypeTree::applyToTree(*this,visitor);
      }

#ifdef DOXYGEN
      /** \brief Initialize all children
       *
       *  @param t0 The initializer for the first child.
       *  @param t1 The initializer for the second child.
       *  @param ... more initializers
       *
       *  The actual number of arguments for this constructor corresponds to
       *  the number of slots used in the template parameter list of the class.
       */
	  CompositeGridFunction (T0& t0, T1& t1, ...) {}
#endif //DOXYGEN
	};

    //========================================================
    // helper template to turn an ordinary GridFunction into a
    // GridFunctionTree leaf
    //========================================================
    //! Turn an ordinary GridFunction into a GridFunctionTree leaf
    /**
     *  \tparam Imp Class implementing the function.
     */
    template<class Imp>
    class GridFunctionBaseAdapter
      : public GridFunctionBase<typename Imp::Traits,
                                GridFunctionBaseAdapter<Imp> >
    {
      const Imp &imp;

    public:
      //! construct a GridFunctionBaseAdapter
      /**
       * \param imp_ The underlying ordinary GridFunction.  A reference to
       *             this Object is stored, so the object must be valid for as
       *             long as this GridFunctionBaseAdapter is used.
       */
      GridFunctionBaseAdapter(const Imp& imp_)
        : imp(imp_)
      { }

      //! Evaluate the GridFunction at given position
      /**
       * Evaluates components of the grid function at the given position and
       * returns these values in a vector.
       *
       * \param[in]  e The entity to evaluate on
       * \param[in]  x The position in entity-local coordinates
       * \param[out] y The result of the evaluation
       */
      inline void evaluate (const typename Imp::Traits::ElementType& e,
                            const typename Imp::Traits::DomainType& x,
                            typename Imp::Traits::RangeType& y) const
      {
        imp.evaluate(e,x,y);
      }

      //! get a reference to the GridView
      inline const typename Imp::Traits::GridViewType& getGridView () const
      {
        return imp.getGridView();
      }
    };

	//=======================================
	// helper template for analytic functions
	//=======================================

	//! function signature for analytic functions on a grid
	template<typename GV, typename RF, int m>
	struct AnalyticGridFunctionTraits
	  : public GridFunctionTraits<GV, RF, m, Dune::FieldVector<RF,m> >
	{
	};

	/** \brief an analytic grid function
     *
     *  This is a convenience class which eases the creation of analytic
     *  GridFunctions.  Classes derived from it need only implement a method
     *  evaluateGlobal(const Dune::FieldVector<typename Traits::DomainFieldType,GV::dimensionworld> &x_global, RangeType &y) to have a
     *  full-fledged GridFunction.
     *
     *  \tparam T   The Traits class
     *  \tparam Imp Class implementing the function.  Imp must be derived from
     *              AnalyticGridFunctionBase in some way
     *              (Barton-Nackman-Trick).
     */
	template<typename T, typename Imp>
	class AnalyticGridFunctionBase
	  : public GridFunctionBase<T,AnalyticGridFunctionBase<T,Imp> >
	{
	public:
	  typedef T Traits;

      //! Construct an Analytic GridFunctionBase given a GridView g_
	  AnalyticGridFunctionBase (const typename Traits::GridViewType& g_) : g(g_) {}

      //! \copydoc GridFunctionBase::evaluate()
	  inline void evaluate (const typename Traits::ElementType& e,
							const typename Traits::DomainType& x,
							typename Traits::RangeType& y) const
	  {
		asImp().evaluateGlobal(e.geometry().global(x),y);
	  }

	  inline const typename Traits::GridViewType& getGridView () const
	  {
		return g;
	  }

	private:
      typename Traits::GridViewType g;
	  Imp& asImp () {return static_cast<Imp &> (*this);}
	  const Imp& asImp () const {return static_cast<const Imp &>(*this);}
	};


    // Adapter takes a vector-valued grid function and provides evaluation
    // of normal flux on the interior of faces.
    template<typename T>
    class NormalFluxGridFunctionAdapter
      : public Dune::PDELab::GridFunctionInterface<Dune::PDELab::GridFunctionTraits<typename T::Traits::GridViewType,
                                                                                    typename T::Traits::RangeFieldType,
                                                                                    1,
                                                                                    Dune::FieldVector<typename T::Traits::RangeFieldType,1>
                                                                                    >,
                                                   NormalFluxGridFunctionAdapter<T> >
      , public TypeTree::LeafNode
    {
    public:
      typedef Dune::PDELab::GridFunctionTraits<typename T::Traits::GridViewType,typename T::Traits::RangeFieldType,1,Dune::FieldVector<typename T::Traits::RangeFieldType,1> > Traits;
      typedef Dune::PDELab::GridFunctionInterface<Traits,NormalFluxGridFunctionAdapter<T> > BaseT;

      NormalFluxGridFunctionAdapter (const T& t_) : t(stackobject_to_shared_ptr(t_)) {}


      inline void evaluate (const typename Traits::ElementType& e,
                            const typename Traits::DomainType& x,
                            typename Traits::RangeType& y) const
      {
        // ensure correct size
        dune_static_assert((static_cast<int>(T::Traits::GridViewType::dimension)==static_cast<int>(T::Traits::dimRange)),"number of components must equal dimension");

        // evaluate velocity
        typename T::Traits::RangeType v;
        t->evaluate(e,x,v);

        // implementation only handles triangles so far
        if (!e.geometry().type().isTriangle())
          DUNE_THROW(Dune::NotImplemented, "only implemented for triangles");

        // start and end corner in local numbering
        int n0, n1;

        typename Traits::DomainType nu;

        // determine outer unit normal
        if (std::abs(x[0])<1E-10)
          {
            // edge 1
            n0 = 2;
            n1 = 0;

            nu = e.geometry().corner(n1);
            nu -= e.geometry().corner(n0);
            typename Traits::DomainFieldType temp = nu[0];
            nu[0] = nu[1];
            nu[1] = -temp;
            nu /= nu.two_norm();
            y = v[0]*nu[0]+v[1]*nu[1];
            return;
          }

        if (std::abs(x[1])<1E-10)
          {
            // edge 2
            n0 = 0;
            n1 = 1;

            nu = e.geometry().corner(n1);
            nu -= e.geometry().corner(n0);
            typename Traits::DomainFieldType temp = nu[0];
            nu[0] = nu[1];
            nu[1] = -temp;
            nu /= nu.two_norm();
            y = v[0]*nu[0]+v[1]*nu[1];
            return;
          }

        if (std::abs(x[0]+x[1]-1.0)<1E-10)
          {
            // edge 0
            n0 = 1;
            n1 = 2;

            nu = e.geometry().corner(n1);
            nu -= e.geometry().corner(n0);
            typename Traits::DomainFieldType temp = nu[0];
            nu[0] = nu[1];
            nu[1] = -temp;
            nu /= nu.two_norm();
            y = v[0]*nu[0]+v[1]*nu[1];
            return;
          }

        DUNE_THROW(Dune::Exception, "x needs to be on an edge");
      }

      //! get a reference to the GridView
      inline const typename Traits::GridViewType& getGridView () const
      {
        return t->getGridView();
      }

    private:
      shared_ptr<T const> t;
    };

    // Adapter takes a vector-valued grid function and applies
    // backward Piola transformation on each element
    template<typename T>
    class PiolaBackwardAdapter
      : public Dune::PDELab::GridFunctionInterface<typename T::Traits,PiolaBackwardAdapter<T> >
      , public TypeTree::LeafNode
    {
    public:
      typedef typename T::Traits::GridViewType GridViewType;
      typedef typename T::Traits Traits;
      typedef Dune::PDELab::GridFunctionInterface<Traits,PiolaBackwardAdapter<T> > BaseT;

      PiolaBackwardAdapter (const T& t_) : t(stackobject_to_shared_ptr(t_)) {}


      inline void evaluate (const typename Traits::ElementType& e,
                            const typename Traits::DomainType& x,
                            typename Traits::RangeType& y) const
      {
        // evaluate velocity
        typename T::Traits::RangeType v;
        t->evaluate(e,x,v);

        // apply Piola transformation
        typename Traits::ElementType::Geometry::JacobianInverseTransposed
          J = e.geometry().jacobianInverseTransposed(x);
        y = 0;
        J.umtv(v,y);
        y *= e.geometry().integrationElement(x);
      }

      //! get a reference to the GridView
      inline const typename Traits::GridViewType& getGridView () const
      {
        return t->getGridView();
      }

    private:
      shared_ptr<T const> t;
    };


	//==========================
	// template metaprograms
	//==========================

    namespace {

      //! implement VisitingFunctor for vtkwriter_tree_addvertexdata
      template<typename VTKWriter>
      struct AddGridFunctionsToVTKWriter
        : public TypeTree::TreeVisitor
        , public TypeTree::DynamicTraversal
      {

        VTKWriter& w;
        const std::string s;

        AddGridFunctionsToVTKWriter(VTKWriter& w_, const std::string & s_) :
          w(w_), s(s_) {}

        template<typename T, typename TreePath>
        void leaf(const T& t, TreePath treePath) {
          std::stringstream name;
          name << s;
          for (std::size_t i=0; i < treePath.size(); ++i)
            name << "_" << treePath.element(i);
          w.addVertexData(new VTKGridFunctionAdapter<T>(t,name.str()));
        }
      };

    } // anonymous namespace

    /** \brief add vertex data from a \ref GridFunctionTree to a VTKWriter
     *
     *  \tparam GV The GridView for the VTKWriter
     *  \tparam T  The \ref GridFunctionTree
     */
	template<typename GV, typename T>
	void vtkwriter_tree_addvertexdata (Dune::VTKWriter<GV>& w, const T& t, std::string s = "data")
	{
      AddGridFunctionsToVTKWriter<Dune::VTKWriter<GV> > visitor(w,s);
      TypeTree::applyToTree(t,visitor);
	}

    //! \} GridFunctionTree

    //! \} Function

  } // namespace PDELab
} // namespace Dune

#endif