This file is indexed.

/usr/include/dune/pdelab/backend/ovlpistlsolverbackend.hh is in libdune-pdelab-dev 2.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
// -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=8 sw=2 sts=2:
#ifndef DUNE_OVLPISTLSOLVERBACKEND_HH
#define DUNE_OVLPISTLSOLVERBACKEND_HH

#include <dune/common/deprecated.hh>
#include <dune/common/parallel/mpihelper.hh>

#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/solvercategory.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/scalarproducts.hh>
#include <dune/istl/paamg/amg.hh>
#include <dune/istl/paamg/pinfo.hh>
#include <dune/istl/io.hh>
#include <dune/istl/superlu.hh>

#include <dune/pdelab/constraints/common/constraints.hh>
#include <dune/pdelab/gridfunctionspace/genericdatahandle.hh>
#include <dune/pdelab/backend/istlvectorbackend.hh>
#include <dune/pdelab/backend/istlmatrixbackend.hh>
#include <dune/pdelab/backend/istl/parallelhelper.hh>
#include <dune/pdelab/backend/seqistlsolverbackend.hh>

namespace Dune {
  namespace PDELab {

    //! \addtogroup Backend
    //! \ingroup PDELab
    //! \{

    //========================================================
    // Generic support for overlapping grids
    // (need to be used with appropriate constraints)
    //========================================================

    // operator that resets result to zero at constrained DOFS
    template<class CC, class M, class X, class Y>
    class OverlappingOperator
      : public Dune::AssembledLinearOperator<M,X,Y>
    {
    public:
      //! export types
      typedef M matrix_type;
      typedef X domain_type;
      typedef Y range_type;
      typedef typename X::ElementType field_type;

      //redefine the category, that is the only difference
      enum {category=Dune::SolverCategory::overlapping};

      OverlappingOperator (const CC& cc_, const M& A)
        : cc(cc_), _A_(A)
      {}

      //! apply operator to x:  \f$ y = A(x) \f$
      virtual void apply (const domain_type& x, range_type& y) const
      {
        istl::raw(_A_).mv(istl::raw(x),istl::raw(y));
        Dune::PDELab::set_constrained_dofs(cc,0.0,y);
      }

      //! apply operator to x, scale and add:  \f$ y = y + \alpha A(x) \f$
      virtual void applyscaleadd (field_type alpha, const domain_type& x, range_type& y) const
      {
        istl::raw(_A_).usmv(alpha,istl::raw(x),istl::raw(y));
        Dune::PDELab::set_constrained_dofs(cc,0.0,y);
      }

      //! get matrix via *
      virtual const M& getmat () const
      {
        return _A_;
      }

    private:
      const CC& cc;
      const M& _A_;
    };

    // new scalar product assuming at least overlap 1
    // uses unique partitioning of nodes for parallelization
    template<class GFS, class X>
    class OverlappingScalarProduct
      : public Dune::ScalarProduct<X>
    {
    public:
      //! export types
      typedef X domain_type;
      typedef typename X::ElementType field_type;

      //! define the category
      enum {category=Dune::SolverCategory::overlapping};

      /*! \brief Constructor needs to know the grid function space
       */
      OverlappingScalarProduct (const GFS& gfs_, const istl::ParallelHelper<GFS>& helper_)
        : gfs(gfs_), helper(helper_)
      {}


      /*! \brief Dot product of two vectors.
        It is assumed that the vectors are consistent on the interior+border
        partition.
      */
      virtual field_type dot (const X& x, const X& y)
      {
        // do local scalar product on unique partition
        field_type sum = helper.disjointDot(x,y);

        // do global communication
        return gfs.gridView().comm().sum(sum);
      }

      /*! \brief Norm of a right-hand side vector.
        The vector must be consistent on the interior+border partition
      */
      virtual double norm (const X& x)
      {
        return sqrt(static_cast<double>(this->dot(x,x)));
      }

    private:
      const GFS& gfs;
      const istl::ParallelHelper<GFS>& helper;
    };

    // wrapped sequential preconditioner
    template<class CC, class GFS, class P>
    class OverlappingWrappedPreconditioner
      : public Dune::Preconditioner<typename Dune::PDELab::BackendVectorSelector<GFS,typename P::domain_type::field_type>::Type,
                                    typename Dune::PDELab::BackendVectorSelector<GFS,typename P::range_type::field_type>::Type>
    {
    public:
      //! \brief The domain type of the preconditioner.
      typedef typename Dune::PDELab::BackendVectorSelector<GFS,typename P::domain_type::field_type>::Type
      domain_type;
      //! \brief The range type of the preconditioner.
      typedef typename Dune::PDELab::BackendVectorSelector<GFS,typename P::range_type::field_type>::Type
      range_type;

      // define the category
      enum {
        //! \brief The category the preconditioner is part of.
        category=Dune::SolverCategory::overlapping
      };

      //! Constructor.
      OverlappingWrappedPreconditioner (const GFS& gfs_, P& prec_, const CC& cc_,
                                        const istl::ParallelHelper<GFS>& helper_)
        : gfs(gfs_), prec(prec_), cc(cc_), helper(helper_)
      {}

      /*!
        \brief Prepare the preconditioner.
      */
      virtual void pre (domain_type& x, range_type& b)
      {
        prec.pre(x,b);
      }

      /*!
        \brief Apply the preconditioner.
      */
      virtual void apply (domain_type& v, const range_type& d)
      {
        range_type dd(d);
        set_constrained_dofs(cc,0.0,dd);
        prec.apply(istl::raw(v),istl::raw(dd));
        Dune::PDELab::AddDataHandle<GFS,domain_type> adddh(gfs,v);
        if (gfs.gridView().comm().size()>1)
          gfs.gridView().communicate(adddh,Dune::All_All_Interface,Dune::ForwardCommunication);
      }

      /*!
        \brief Clean up.
      */
      virtual void post (domain_type& x)
      {
        prec.post(istl::raw(x));
      }

    private:
      const GFS& gfs;
      P& prec;
      const CC& cc;
      const istl::ParallelHelper<GFS>& helper;
    };


#if HAVE_SUPERLU
    // exact subdomain solves with SuperLU as preconditioner
    template<class GFS, class M, class X, class Y>
    class SuperLUSubdomainSolver : public Dune::Preconditioner<X,Y>
    {
      typedef typename M::BaseT ISTLM;

    public:
      //! \brief The domain type of the preconditioner.
      typedef X domain_type;
      //! \brief The range type of the preconditioner.
      typedef Y range_type;
      //! \brief The field type of the preconditioner.
      typedef typename X::ElementType field_type;


      // define the category
      enum {
        //! \brief The category the preconditioner is part of.
        category=Dune::SolverCategory::overlapping
      };

      /*! \brief Constructor.

        Constructor gets all parameters to operate the prec.
        \param gfs_ The grid function space.
        \param A_ The matrix to operate on.
      */
      SuperLUSubdomainSolver (const GFS& gfs_, const M& A_)
        : gfs(gfs_), solver(istl::raw(A_),false) // this does the decomposition
      {}

      /*!
        \brief Prepare the preconditioner.
      */
      virtual void pre (X& x, Y& b) {}

      /*!
        \brief Apply the precondioner.
      */
      virtual void apply (X& v, const Y& d)
      {
        Dune::InverseOperatorResult stat;
        Y b(d); // need copy, since solver overwrites right hand side
        solver.apply(istl::raw(v),istl::raw(b),stat);
        if (gfs.gridView().comm().size()>1)
          {
            AddDataHandle<GFS,X> adddh(gfs,v);
            gfs.gridView().communicate(adddh,Dune::All_All_Interface,Dune::ForwardCommunication);
          }
      }

      /*!
        \brief Clean up.
      */
      virtual void post (X& x) {}

    private:
      const GFS& gfs;
      Dune::SuperLU<ISTLM> solver;
    };

    // exact subdomain solves with SuperLU as preconditioner
    template<class GFS, class M, class X, class Y>
    class RestrictedSuperLUSubdomainSolver : public Dune::Preconditioner<X,Y>
    {
      typedef typename M::BaseT ISTLM;

    public:
      //! \brief The domain type of the preconditioner.
      typedef X domain_type;
      //! \brief The range type of the preconditioner.
      typedef Y range_type;
      //! \brief The field type of the preconditioner.
      typedef typename X::ElementType field_type;


      // define the category
      enum {
        //! \brief The category the preconditioner is part of.
        category=Dune::SolverCategory::overlapping
      };

      /*! \brief Constructor.

        Constructor gets all parameters to operate the prec.
        \param gfs_ The grid function space.
        \param A_ The matrix to operate on.
        \param helper_ The parallel istl helper.
      */
      RestrictedSuperLUSubdomainSolver (const GFS& gfs_, const M& A_,
                                        const istl::ParallelHelper<GFS>& helper_)
        : gfs(gfs_), solver(istl::raw(A_),false), helper(helper_) // this does the decomposition
      {}

      /*!
        \brief Prepare the preconditioner.
      */
      virtual void pre (X& x, Y& b) {}

      /*!
        \brief Apply the precondioner.
      */
      virtual void apply (X& v, const Y& d)
      {
        Dune::InverseOperatorResult stat;
        Y b(d); // need copy, since solver overwrites right hand side
        solver.apply(istl::raw(v),istl::raw(b),stat);
        if (gfs.gridView().comm().size()>1)
          {
            helper.maskForeignDOFs(istl::raw(v));
            AddDataHandle<GFS,X> adddh(gfs,v);
            gfs.gridView().communicate(adddh,Dune::InteriorBorder_All_Interface,Dune::ForwardCommunication);
          }
      }

      /*!
        \brief Clean up.
      */
      virtual void post (X& x) {}

    private:
      const GFS& gfs;
      Dune::SuperLU<ISTLM> solver;
      const istl::ParallelHelper<GFS>& helper;
    };
#endif

    template<typename GFS>
    class OVLPScalarProductImplementation
    {
    public:
      OVLPScalarProductImplementation(const GFS& gfs_)
        : gfs(gfs_), helper(gfs_)
      {}

      /*! \brief Dot product of two vectors.
        It is assumed that the vectors are consistent on the interior+border
        partition.
      */
      template<typename X>
      typename X::ElementType dot (const X& x, const X& y) const
      {
        // do local scalar product on unique partition
        typename X::ElementType sum = helper.disjointDot(x,y);

        // do global communication
        return gfs.gridView().comm().sum(sum);
      }

      /*! \brief Norm of a right-hand side vector.
        The vector must be consistent on the interior+border partition
      */
       template<typename X>
      typename X::ElementType norm (const X& x) const
      {
        return sqrt(static_cast<double>(this->dot(x,x)));
      }

      const istl::ParallelHelper<GFS>& parallelHelper() const
      {
        return helper;
      }

      // need also non-const version;
      istl::ParallelHelper<GFS>& parallelHelper() // P.B.: needed for createIndexSetAndProjectForAMG
      {
        return helper;
      }

    private:
      const GFS& gfs;
      istl::ParallelHelper<GFS> helper;
    };


    template<typename GFS, typename X>
    class OVLPScalarProduct
      : public ScalarProduct<X>
    {
    public:
      enum {category=Dune::SolverCategory::overlapping};
      OVLPScalarProduct(const OVLPScalarProductImplementation<GFS>& implementation_)
        : implementation(implementation_)
      {}

      virtual typename X::BaseT::field_type dot(const X& x, const X& y)
      {
        return implementation.dot(x,y);
      }

      virtual typename X::BaseT::field_type norm (const X& x)
      {
        return sqrt(static_cast<double>(this->dot(x,x)));
      }

    private:
      const OVLPScalarProductImplementation<GFS>& implementation;
    };

    template<class GFS, class C,
             template<class,class,class,int> class Preconditioner,
             template<class> class Solver>
    class ISTLBackend_OVLP_Base
      : public OVLPScalarProductImplementation<GFS>, public LinearResultStorage
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs_ a grid function space
        \param[in] c_ a constraints object
        \param[in] maxiter_ maximum number of iterations to do
        \param[in] steps_ number of SSOR steps to apply as inner iteration
        \param[in] verbose_ print messages if true
      */
      ISTLBackend_OVLP_Base (const GFS& gfs_, const C& c_, unsigned maxiter_=5000,
                                            int steps_=5, int verbose_=1)
        : OVLPScalarProductImplementation<GFS>(gfs_), gfs(gfs_), c(c_), maxiter(maxiter_), steps(steps_), verbose(verbose_)
      {}

      /*! \brief solve the given linear system

        \param[in] A the given matrix
        \param[out] z the solution vector to be computed
        \param[in] r right hand side
        \param[in] reduction to be achieved
      */
      template<class M, class V, class W>
      void apply(M& A, V& z, W& r, typename V::ElementType reduction)
      {
        typedef OverlappingOperator<C,M,V,W> POP;
        POP pop(c,A);
        typedef OVLPScalarProduct<GFS,V> PSP;
        PSP psp(*this);
        typedef Preconditioner<typename M::BaseT,typename V::BaseT,typename W::BaseT,1> SeqPrec;
        SeqPrec seqprec(istl::raw(A),steps,1.0);
        typedef OverlappingWrappedPreconditioner<C,GFS,SeqPrec> WPREC;
        WPREC wprec(gfs,seqprec,c,this->parallelHelper());
        int verb=0;
        if (gfs.gridView().comm().rank()==0) verb=verbose;
        Solver<V> solver(pop,psp,wprec,reduction,maxiter,verb);
        Dune::InverseOperatorResult stat;
        solver.apply(z,r,stat);
        res.converged  = stat.converged;
        res.iterations = stat.iterations;
        res.elapsed    = stat.elapsed;
        res.reduction  = stat.reduction;
        res.conv_rate  = stat.conv_rate;
      }
    private:
      const GFS& gfs;
      const C& c;
      unsigned maxiter;
      int steps;
      int verbose;
    };

    // Base class for ILU0 as preconditioner
    template<class GFS, class C,
             template<class> class Solver>
    class ISTLBackend_OVLP_ILU0_Base
      : public OVLPScalarProductImplementation<GFS>, public LinearResultStorage
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs_ a grid function space
        \param[in] c_ a constraints object
        \param[in] maxiter_ maximum number of iterations to do
        \param[in] verbose_ verbosity level (0=silent)
      */
      ISTLBackend_OVLP_ILU0_Base (const GFS& gfs_, const C& c_, unsigned maxiter_=5000, int verbose_=1)
        : OVLPScalarProductImplementation<GFS>(gfs_), gfs(gfs_), c(c_), maxiter(maxiter_), verbose(verbose_)
      {}

      /*! \brief solve the given linear system

        \param[in] A the given matrix
        \param[out] z the solution vector to be computed
        \param[in] r right hand side
        \param[in] reduction to be achieved
      */
      template<class M, class V, class W>
      void apply(M& A, V& z, W& r, typename V::ElementType reduction)
      {
        typedef OverlappingOperator<C,M,V,W> POP;
        POP pop(c,A);
        typedef OVLPScalarProduct<GFS,V> PSP;
        PSP psp(*this);
        typedef SeqILU0<typename M::BaseT,typename V::BaseT,typename W::BaseT,1> SeqPrec;
        SeqPrec seqprec(istl::raw(A),1.0);
        typedef OverlappingWrappedPreconditioner<C,GFS,SeqPrec> WPREC;
        WPREC wprec(gfs,seqprec,c,this->parallelHelper());
        int verb=0;
        if (gfs.gridView().comm().rank()==0) verb=verbose;
        Solver<V> solver(pop,psp,wprec,reduction,maxiter,verb);
        Dune::InverseOperatorResult stat;
        solver.apply(z,r,stat);
        res.converged  = stat.converged;
        res.iterations = stat.iterations;
        res.elapsed    = stat.elapsed;
        res.reduction  = stat.reduction;
        res.conv_rate  = stat.conv_rate;
      }
    private:
      const GFS& gfs;
      const C& c;
      unsigned maxiter;
      int steps;
      int verbose;
    };

    // Base class for ILUn as preconditioner
    template<class GFS, class C,
             template<class> class Solver>
    class ISTLBackend_OVLP_ILUn_Base
      : public OVLPScalarProductImplementation<GFS>, public LinearResultStorage
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs_ a grid function space
        \param[in] c_ a constraints object
        \param[in] n_ level for ILUn
        \param[in] maxiter_ maximum number of iterations to do
        \param[in] verbose_ verbosity level (0=silent)
      */
      ISTLBackend_OVLP_ILUn_Base (const GFS& gfs_, const C& c_, int n_=1, unsigned maxiter_=5000, int verbose_=1)
        : OVLPScalarProductImplementation<GFS>(gfs_), gfs(gfs_), c(c_), n(n_), maxiter(maxiter_), verbose(verbose_)
      {}

      /*! \brief solve the given linear system

        \param[in] A the given matrix
        \param[out] z the solution vector to be computed
        \param[in] r right hand side
        \param[in] reduction to be achieved
      */
      template<class M, class V, class W>
      void apply(M& A, V& z, W& r, typename V::ElementType reduction)
      {
        typedef OverlappingOperator<C,M,V,W> POP;
        POP pop(c,A);
        typedef OVLPScalarProduct<GFS,V> PSP;
        PSP psp(*this);
        typedef SeqILUn<typename M::BaseT,typename V::BaseT,typename W::BaseT,1> SeqPrec;
        SeqPrec seqprec(istl::raw(A),n,1.0);
        typedef OverlappingWrappedPreconditioner<C,GFS,SeqPrec> WPREC;
        WPREC wprec(gfs,seqprec,c,this->parallelHelper());
        int verb=0;
        if (gfs.gridView().comm().rank()==0) verb=verbose;
        Solver<V> solver(pop,psp,wprec,reduction,maxiter,verb);
        Dune::InverseOperatorResult stat;
        solver.apply(z,r,stat);
        res.converged  = stat.converged;
        res.iterations = stat.iterations;
        res.elapsed    = stat.elapsed;
        res.reduction  = stat.reduction;
        res.conv_rate  = stat.conv_rate;
      }
    private:
      const GFS& gfs;
      const C& c;
      int n;
      unsigned maxiter;
      int steps;
      int verbose;
    };

    //! \addtogroup PDELab_ovlpsolvers Overlapping Solvers
    //! \{

    /**
     * @brief Overlapping parallel BiCGStab solver with SSOR preconditioner
     * @tparam GFS The Type of the GridFunctionSpace.
     * @tparam CC The Type of the Constraints Container.
     */
    template<class GFS, class CC>
    class ISTLBackend_OVLP_BCGS_SSORk
      : public ISTLBackend_OVLP_Base<GFS,CC,Dune::SeqSSOR, Dune::BiCGSTABSolver>
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs a grid function space
        \param[in] cc a constraints container object
        \param[in] maxiter maximum number of iterations to do
        \param[in] steps number of SSOR steps to apply as inner iteration
        \param[in] verbose print messages if true
      */
      ISTLBackend_OVLP_BCGS_SSORk (const GFS& gfs, const CC& cc, unsigned maxiter=5000,
                                            int steps=5, int verbose=1)
        : ISTLBackend_OVLP_Base<GFS,CC,Dune::SeqSSOR, Dune::BiCGSTABSolver>(gfs, cc, maxiter, steps, verbose)
      {}
    };
    /**
     * @brief Overlapping parallel BiCGStab solver with ILU0 preconditioner
     * @tparam GFS The Type of the GridFunctionSpace.
     * @tparam CC The Type of the Constraints Container.
     */
    template<class GFS, class CC>
    class ISTLBackend_OVLP_BCGS_ILU0
      : public ISTLBackend_OVLP_ILU0_Base<GFS,CC,Dune::BiCGSTABSolver>
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs a grid function space
        \param[in] cc a constraints container object
        \param[in] maxiter maximum number of iterations to do
        \param[in] verbose print messages if true
      */
      ISTLBackend_OVLP_BCGS_ILU0 (const GFS& gfs, const CC& cc, unsigned maxiter=5000, int verbose=1)
        : ISTLBackend_OVLP_ILU0_Base<GFS,CC,Dune::BiCGSTABSolver>(gfs, cc, maxiter, verbose)
      {}
    };
    /**
     * @brief Overlapping parallel BiCGStab solver with ILU0 preconditioner
     * @tparam GFS The Type of the GridFunctionSpace.
     * @tparam CC The Type of the Constraints Container.
     */
    template<class GFS, class CC>
    class ISTLBackend_OVLP_BCGS_ILUn
      : public ISTLBackend_OVLP_ILUn_Base<GFS,CC,Dune::BiCGSTABSolver>
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs a grid function space
        \param[in] cc a constraints container object
        \param[in] n level for ILUn
        \param[in] maxiter maximum number of iterations to do
        \param[in] verbose print messages if true
      */
      ISTLBackend_OVLP_BCGS_ILUn (const GFS& gfs, const CC& cc, int n=1, unsigned maxiter=5000, int verbose=1)
        : ISTLBackend_OVLP_ILUn_Base<GFS,CC,Dune::BiCGSTABSolver>(gfs, cc, n, maxiter, verbose)
      {}
    };
    /**
     * @brief Overlapping parallel CGS solver with SSOR preconditioner
     * @tparam GFS The Type of the GridFunctionSpace.
     * @tparam CC The Type of the Constraints Container.
     */
    template<class GFS, class CC>
    class ISTLBackend_OVLP_CG_SSORk
      : public ISTLBackend_OVLP_Base<GFS,CC,Dune::SeqSSOR, Dune::CGSolver>
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs a grid function space
        \param[in] cc a constraints container object
        \param[in] maxiter maximum number of iterations to do
        \param[in] steps number of SSOR steps to apply as inner iteration
        \param[in] verbose print messages if true
      */
      ISTLBackend_OVLP_CG_SSORk (const GFS& gfs, const CC& cc, unsigned maxiter=5000,
                                            int steps=5, int verbose=1)
        : ISTLBackend_OVLP_Base<GFS,CC,Dune::SeqSSOR, Dune::CGSolver>(gfs, cc, maxiter, steps, verbose)
      {}
    };

    /**
     * @brief Overlapping parallel restarted GMRes solver with ILU0 preconditioner
     * @tparam GFS The Type of the GridFunctionSpace.
     * @tparam CC The Type of the Constraints Container.
     */
    template<class GFS, class CC>
    class ISTLBackend_OVLP_GMRES_ILU0
      : public OVLPScalarProductImplementation<GFS>, public LinearResultStorage
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs a grid function space
        \param[in] cc a constraints container object
        \param[in] maxiter maximum number of iterations to do
        \param[in] verbose print messages if true
      */
        ISTLBackend_OVLP_GMRES_ILU0 (const GFS& gfs_, const CC& cc_, unsigned maxiter_=5000, int verbose_=1,
            int restart_ = 20, bool recalc_defect_ = false)
        : OVLPScalarProductImplementation<GFS>(gfs_), gfs(gfs_), cc(cc_), maxiter(maxiter_), verbose(verbose_),
          restart(restart_), recalc_defect(recalc_defect_)
      {}

      /*! \brief solve the given linear system
        \param[in] A the given matrix
        \param[out] z the solution vector to be computed
        \param[in] r right hand side
        \param[in] reduction to be achieved
      */
      template<class M, class V, class W>
      void apply(M& A, V& z, W& r, typename V::ElementType reduction)
      {
        typedef OverlappingOperator<CC,M,V,W> POP;
        POP pop(cc,A);
        typedef OVLPScalarProduct<GFS,V> PSP;
        PSP psp(*this);
        typedef SeqILU0<typename M::BaseT,typename V::BaseT,typename W::BaseT,1> SeqPrec;
        SeqPrec seqprec(istl::raw(A),1.0);
        typedef OverlappingWrappedPreconditioner<CC,GFS,SeqPrec> WPREC;
        WPREC wprec(gfs,seqprec,cc,this->parallelHelper());
        int verb=0;
        if (gfs.gridView().comm().rank()==0) verb=verbose;
        RestartedGMResSolver<V> solver(pop,psp,wprec,reduction,restart,maxiter,verb,recalc_defect);
        Dune::InverseOperatorResult stat;
        solver.apply(z,r,stat);
        res.converged  = stat.converged;
        res.iterations = stat.iterations;
        res.elapsed    = stat.elapsed;
        res.reduction  = stat.reduction;
        res.conv_rate  = stat.conv_rate;
      }

    private:
      const GFS& gfs;
      const CC& cc;
      unsigned maxiter;
      int steps;
      int verbose;
      int restart;
      bool recalc_defect;
    };

    //! \} Solver

    template<class GFS, class C, template<typename> class Solver>
    class ISTLBackend_OVLP_SuperLU_Base
      : public OVLPScalarProductImplementation<GFS>, public LinearResultStorage
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs_ a grid function space
        \param[in] c_ a constraints object
        \param[in] maxiter_ maximum number of iterations to do
        \param[in] verbose_ print messages if true
      */
      ISTLBackend_OVLP_SuperLU_Base (const GFS& gfs_, const C& c_, unsigned maxiter_=5000,
                                              int verbose_=1)
        : OVLPScalarProductImplementation<GFS>(gfs_), gfs(gfs_), c(c_), maxiter(maxiter_), verbose(verbose_)
      {}

      /*! \brief solve the given linear system

        \param[in] A the given matrix
        \param[out] z the solution vector to be computed
        \param[in] r right hand side
        \param[in] reduction to be achieved
      */
      template<class M, class V, class W>
      void apply(M& A, V& z, W& r, typename V::ElementType reduction)
      {
        typedef OverlappingOperator<C,M,V,W> POP;
        POP pop(c,A);
        typedef OVLPScalarProduct<GFS,V> PSP;
        PSP psp(*this);
#if HAVE_SUPERLU
        typedef SuperLUSubdomainSolver<GFS,M,V,W> PREC;
        PREC prec(gfs,A);
        int verb=0;
        if (gfs.gridView().comm().rank()==0) verb=verbose;
        Solver<V> solver(pop,psp,prec,reduction,maxiter,verb);
        Dune::InverseOperatorResult stat;
        solver.apply(z,r,stat);
        res.converged  = stat.converged;
        res.iterations = stat.iterations;
        res.elapsed    = stat.elapsed;
        res.reduction  = stat.reduction;
        res.conv_rate  = stat.conv_rate;
#else
        std::cout << "No superLU support, please install and configure it." << std::endl;
#endif
      }

    private:
      const GFS& gfs;
      const C& c;
      unsigned maxiter;
      int verbose;
    };

    //! \addtogroup PDELab_ovlpsolvers Overlapping Solvers
    //! \{
    /**
     * @brief Overlapping parallel BiCGStab solver with SuperLU preconditioner
     * @tparam GFS The Type of the GridFunctionSpace.
     * @tparam CC The Type of the Constraints Container.
     */
    template<class GFS, class CC>
    class ISTLBackend_OVLP_BCGS_SuperLU
      : public ISTLBackend_OVLP_SuperLU_Base<GFS,CC,Dune::BiCGSTABSolver>
    {
    public:

      /*! \brief make a linear solver object

        \param[in] gfs_ a grid function space
        \param[in] cc_ a constraints container object
        \param[in] maxiter_ maximum number of iterations to do
        \param[in] verbose_ print messages if true
      */
      ISTLBackend_OVLP_BCGS_SuperLU (const GFS& gfs_, const CC& cc_, unsigned maxiter_=5000,
                                              int verbose_=1)
        : ISTLBackend_OVLP_SuperLU_Base<GFS,CC,Dune::BiCGSTABSolver>(gfs_,cc_,maxiter_,verbose_)
      {}
    };

    /**
     * @brief Overlapping parallel CG solver with SuperLU preconditioner
     * @tparam GFS The Type of the GridFunctionSpace.
     * @tparam CC The Type of the Constraints Container.
     */
    template<class GFS, class CC>
    class ISTLBackend_OVLP_CG_SuperLU
      : public ISTLBackend_OVLP_SuperLU_Base<GFS,CC,Dune::CGSolver>
    {
    public:

      /*! \brief make a linear solver object

        \param[in] gfs_ a grid function space
        \param[in] cc_ a constraints object
        \param[in] maxiter_ maximum number of iterations to do
        \param[in] verbose_ print messages if true
      */
      ISTLBackend_OVLP_CG_SuperLU (const GFS& gfs_, const CC& cc_,
                                              unsigned maxiter_=5000,
                                              int verbose_=1)
        : ISTLBackend_OVLP_SuperLU_Base<GFS,CC,Dune::CGSolver>(gfs_,cc_,maxiter_,verbose_)
      {}
    };


    /** @brief Solver to be used for explicit time-steppers with (block-)diagonal mass matrix
     * @tparam GFS The Type of the GridFunctionSpace.
     */
    template<class GFS>
    class ISTLBackend_OVLP_ExplicitDiagonal
      : public LinearResultStorage
    {
    public:
      /*! \brief make a linear solver object

        \param[in] gfs_ a grid function space
      */
      explicit ISTLBackend_OVLP_ExplicitDiagonal (const GFS& gfs_)
        : gfs(gfs_)
      {}

      explicit ISTLBackend_OVLP_ExplicitDiagonal (const ISTLBackend_OVLP_ExplicitDiagonal& other_)
        : gfs(other_.gfs)
      {}

      /*! \brief compute global norm of a vector

        \param[in] v the given vector
      */
      template<class V>
      typename V::ElementType norm(const V& v) const
      {
        dune_static_assert
          (AlwaysFalse<V>::value,
           "ISTLBackend_OVLP_ExplicitDiagonal::norm() should not be "
           "neccessary, so we skipped the implementation.  If you have a "
           "scenario where you need it, please implement it or report back to "
           "us.");
      }

      /*! \brief solve the given linear system

        \param[in] A the given matrix
        \param[out] z the solution vector to be computed
        \param[in] r right hand side
        \param[in] reduction to be achieved
      */
      template<class M, class V, class W>
      void apply(M& A, V& z, W& r, typename W::ElementType reduction)
      {
        Dune::SeqJac<typename M::BaseT,typename V::BaseT,typename W::BaseT> jac(istl::raw(A),1,1.0);
        jac.pre(istl::raw(z),istl::raw(r));
        jac.apply(istl::raw(z),istl::raw(r));
        jac.post(istl::raw(z));
        if (gfs.gridView().comm().size()>1)
        {
          CopyDataHandle<GFS,V> copydh(gfs,z);
          gfs.gridView().communicate(copydh,Dune::InteriorBorder_All_Interface,Dune::ForwardCommunication);
        }
        res.converged  = true;
        res.iterations = 1;
        res.elapsed    = 0.0;
        res.reduction  = static_cast<double>(reduction);
        res.conv_rate  = static_cast<double>(reduction); // pow(reduction,1.0/1)
      }

    private:
      const GFS& gfs;
    };
    //! \} Overlapping Solvers

    template<class GO, int s, template<class,class,class,int> class Preconditioner,
             template<class> class Solver>
    class ISTLBackend_AMG : public LinearResultStorage
    {
      typedef typename GO::Traits::TrialGridFunctionSpace GFS;
      typedef istl::ParallelHelper<GFS> PHELPER;
      typedef typename GO::Traits::Jacobian M;
      typedef typename M::BaseT MatrixType;
      typedef typename GO::Traits::Domain V;
      typedef typename V::BaseT VectorType;
      typedef typename istl::CommSelector<s,Dune::MPIHelper::isFake>::type Comm;
#if HAVE_MPI
      typedef Preconditioner<MatrixType,VectorType,VectorType,1> Smoother;
      typedef Dune::BlockPreconditioner<VectorType,VectorType,Comm,Smoother> ParSmoother;
      typedef Dune::OverlappingSchwarzOperator<MatrixType,VectorType,VectorType,Comm> Operator;
#else
      typedef Preconditioner<MatrixType,VectorType,VectorType,1> ParSmoother;
      typedef Dune::MatrixAdapter<MatrixType,VectorType,VectorType> Operator;
#endif
      typedef typename Dune::Amg::SmootherTraits<ParSmoother>::Arguments SmootherArgs;
      typedef Dune::Amg::AMG<Operator,VectorType,ParSmoother,Comm> AMG;

      typedef typename V::ElementType RF;

    public:

      /**
       * @brief Parameters object to customize matrix hierachy building.
       */
      typedef Dune::Amg::Parameters Parameters;

    public:
      ISTLBackend_AMG(const GFS& gfs_, unsigned maxiter_=5000,
                      int verbose_=1, bool reuse_=false,
                      bool usesuperlu_=true)
        : gfs(gfs_), phelper(gfs,verbose_), maxiter(maxiter_), params(15,2000),
          verbose(verbose_), reuse(reuse_), firstapply(true),
          usesuperlu(usesuperlu_)
      {
        params.setDefaultValuesIsotropic(GFS::Traits::GridViewType::Traits::Grid::dimension);
        params.setDebugLevel(verbose_);
#if !HAVE_SUPERLU
        if (gfs.gridView().comm().rank() == 0 && usesuperlu == true)
          {
            std::cout << "WARNING: You are using AMG without SuperLU!"
                      << " Please consider installing SuperLU,"
                      << " or set the usesuperlu flag to false"
                      << " to suppress this warning." << std::endl;
          }
#endif
      }

       /*! \brief set AMG parameters

        \param[in] params_ a parameter object of Type Dune::Amg::Parameters
      */
      void setParameters(const Parameters& params_)
      {
        params = params_;
      }

      void setparams(Parameters params_) DUNE_DEPRECATED_MSG("setparams() is deprecated, use setParameters() instead")
      {
        params = params_;
      }

      /**
       * @brief Get the parameters describing the behaviuour of AMG.
       *
       * The returned object can be adjusted to ones needs and then can be
       * reset using setParameters.
       * @return The object holding the parameters of AMG.
       */
      const Parameters& parameters() const
      {
        return params;
      }

      /*! \brief compute global norm of a vector

        \param[in] v the given vector
      */
      typename V::ElementType norm (const V& v) const
      {
        typedef OverlappingScalarProduct<GFS,V> PSP;
        PSP psp(gfs,phelper);
        return psp.norm(v);
      }

      /*! \brief solve the given linear system

        \param[in] A the given matrix
        \param[out] z the solution vector to be computed
        \param[in] r right hand side
        \param[in] reduction to be achieved
      */
      void apply(M& A, V& z, V& r, typename V::ElementType reduction)
      {
        Timer watch;
        Comm oocc(gfs.gridView().comm());
        MatrixType& mat=istl::raw(A);
        typedef Dune::Amg::CoarsenCriterion<Dune::Amg::SymmetricCriterion<MatrixType,
          Dune::Amg::FirstDiagonal> > Criterion;
#if HAVE_MPI
        phelper.createIndexSetAndProjectForAMG(A, oocc);
        Operator oop(mat, oocc);
        Dune::OverlappingSchwarzScalarProduct<VectorType,Comm> sp(oocc);
#else
        Operator oop(mat);
        Dune::SeqScalarProduct<VectorType> sp;
#endif
        SmootherArgs smootherArgs;
        smootherArgs.iterations = 1;
        smootherArgs.relaxationFactor = 1;
        Criterion criterion(params);
        stats.tprepare=watch.elapsed();
        watch.reset();

        int verb=0;
        if (gfs.gridView().comm().rank()==0) verb=verbose;
        //only construct a new AMG if the matrix changes
        if (reuse==false || firstapply==true){
          amg.reset(new AMG(oop, criterion, smootherArgs, oocc));
          firstapply = false;
          stats.tsetup = watch.elapsed();
          stats.levels = amg->maxlevels();
          stats.directCoarseLevelSolver=amg->usesDirectCoarseLevelSolver();
        }
        watch.reset();
        Solver<VectorType> solver(oop,sp,*amg,RF(reduction),maxiter,verb);
        Dune::InverseOperatorResult stat;

        solver.apply(istl::raw(z),istl::raw(r),stat);
        stats.tsolve= watch.elapsed();
        res.converged  = stat.converged;
        res.iterations = stat.iterations;
        res.elapsed    = stat.elapsed;
        res.reduction  = stat.reduction;
        res.conv_rate  = stat.conv_rate;
      }

      /**
       * @brief Get statistics of the AMG solver (no of levels, timings).
       * @return statistis of the AMG solver.
       */
      const ISTLAMGStatistics& statistics() const
      {
        return stats;
      }

    private:
      const GFS& gfs;
      PHELPER phelper;
      unsigned maxiter;
      Parameters params;
      int verbose;
      bool reuse;
      bool firstapply;
      bool usesuperlu;
      shared_ptr<AMG> amg;
      ISTLAMGStatistics stats;
    };

    //! \addtogroup PDELab_ovlpsolvers Overlapping Solvers
    //! \{

    /**
     * @brief Overlapping parallel conjugate gradient solver preconditioned with AMG smoothed by SSOR
     * @tparam GO The type of the grid operator
     * (or the fakeGOTraits class for the old grid operator space).
     * @tparam s The bits to use for the global index.
     */
    template<class GO, int s=96>
    class ISTLBackend_CG_AMG_SSOR
      : public ISTLBackend_AMG<GO, s, Dune::SeqSSOR, Dune::CGSolver>
    {
      typedef typename GO::Traits::TrialGridFunctionSpace GFS;
    public:
      /**
       * @brief Constructor
       * @param gfs_ The grid function space used.
       * @param maxiter_ The maximum number of iterations allowed.
       * @param verbose_ The verbosity level to use.
       * @param reuse_ Set true, if the Matrix to be used is always identical
       * (AMG aggregation is then only performed once).
       * @param usesuperlu_ Set false, to suppress the no SuperLU warning
       */
      ISTLBackend_CG_AMG_SSOR(const GFS& gfs_, unsigned maxiter_=5000,
                              int verbose_=1, bool reuse_=false,
                              bool usesuperlu_=true)
        : ISTLBackend_AMG<GO, s, Dune::SeqSSOR, Dune::CGSolver>
          (gfs_, maxiter_, verbose_, reuse_, usesuperlu_)
      {}
    };

    /**
     * @brief Overlapping parallel BiCGStab solver preconditioned with AMG smoothed by SSOR.
     * @tparam GO The type of the grid operator
     * (or the fakeGOTraits class for the old grid operator space).
     * @tparam s The bits to use for the globale index.
     */
    template<class GO, int s=96>
    class ISTLBackend_BCGS_AMG_SSOR
      : public ISTLBackend_AMG<GO, s, Dune::SeqSSOR, Dune::BiCGSTABSolver>
    {
      typedef typename GO::Traits::TrialGridFunctionSpace GFS;
    public:
      /**
       * @brief Constructor
       * @param gfs_ The grid function space used.
       * @param maxiter_ The maximum number of iterations allowed.
       * @param verbose_ The verbosity level to use.
       * @param reuse_ Set true, if the Matrix to be used is always identical
       * (AMG aggregation is then only performed once).
       * @param usesuperlu_ Set false, to suppress the no SuperLU warning
       */
      ISTLBackend_BCGS_AMG_SSOR(const GFS& gfs_, unsigned maxiter_=5000,
                                int verbose_=1, bool reuse_=false,
                                bool usesuperlu_=true)
        : ISTLBackend_AMG<GO, s, Dune::SeqSSOR, Dune::BiCGSTABSolver>
          (gfs_, maxiter_, verbose_, reuse_, usesuperlu_)
      {}
    };

    /**
     * @brief Overlapping parallel BiCGStab solver preconditioned with AMG smoothed by ILU0.
     * @tparam GO The type of the grid operator
     * (or the fakeGOTraits class for the old grid operator space).
     * @tparam s The bits to use for the globale index.
     */
    template<class GO, int s=96>
    class ISTLBackend_BCGS_AMG_ILU0
      : public ISTLBackend_AMG<GO, s, Dune::SeqILU0, Dune::BiCGSTABSolver>
    {
      typedef typename GO::Traits::TrialGridFunctionSpace GFS;
    public:
      /**
       * @brief Constructor
       * @param gfs_ The grid function space used.
       * @param maxiter_ The maximum number of iterations allowed.
       * @param verbose_ The verbosity level to use.
       * @param reuse_ Set true, if the Matrix to be used is always identical
       * (AMG aggregation is then only performed once).
       * @param usesuperlu_ Set false, to suppress the no SuperLU warning
       */
      ISTLBackend_BCGS_AMG_ILU0(const GFS& gfs_, unsigned maxiter_=5000,
                                int verbose_=1, bool reuse_=false,
                                bool usesuperlu_=true)
        : ISTLBackend_AMG<GO, s, Dune::SeqILU0, Dune::BiCGSTABSolver>
          (gfs_, maxiter_, verbose_, reuse_, usesuperlu_)
      {}
    };

    //! \} Overlapping Solvers

    //! \} group Backend

  } // namespace PDELab
} // namespace Dune

#endif