This file is indexed.

/usr/include/dune/grid/albertagrid/refinement.hh is in libdune-grid-dev 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ALBERTA_REFINEMENT_HH
#define DUNE_ALBERTA_REFINEMENT_HH

/** \file
 *  \author Martin Nolte
 *  \brief  provides a wrapper for ALBERTA's refinement patches
 *          and the corners for geometryInFather
 */

#include <cassert>

#include <dune/grid/albertagrid/misc.hh>
#include <dune/grid/albertagrid/elementinfo.hh>

#if HAVE_ALBERTA

namespace Dune
{

  namespace Alberta
  {

    // Internal Forward Declarations
    // -----------------------------

    template< int dim, int codim >
    struct ForEachInteriorSubChild;



    // Patch
    // -----

    template< int dim >
    class Patch
    {
      typedef Patch< dim > This;

      dune_static_assert( ((dim >= 1) && (dim <= 3)),
                          "Alberta supports only dimensions 1, 2, 3" );

    public:
      static const int dimension = dim;

      typedef Alberta::ElementInfo< dimension > ElementInfo;

      typedef ALBERTA RC_LIST_EL ElementList;

    private:
      ElementList *list_;
      int count_;

    public:
      Patch ( ElementList *list, int count )
        : list_( list ),
          count_( count )
      {
        assert( count > 0 );
      }

      Element *operator[] ( int i ) const;

      int count () const
      {
        return count_;
      }

      template< class LevelProvider >
      ElementInfo elementInfo ( int i, const LevelProvider &levelProvider ) const;

      int elementType ( int i ) const;
      bool hasNeighbor ( int i, int neighbor ) const;
      int neighborIndex ( int i, int neighbor ) const;

      template< class Functor >
      void forEach ( Functor &functor ) const
      {
        for( int i = 0; i < count(); ++i )
          functor( (*this)[ i ] );
      }

      template< int codim, class Functor >
      void forEachInteriorSubChild ( Functor &functor ) const
      {
        ForEachInteriorSubChild< dim, codim >::apply( functor, *this );
      }
    };


    template< int dim >
    inline Element *Patch< dim >::operator[] ( int i ) const
    {
      assert( (i >= 0) && (i < count()) );
      return list_[ i ].el_info.el;
    }


    template< int dim >
    template< class LevelProvider >
    inline typename Patch< dim >::ElementInfo
    Patch< dim >::elementInfo ( int i, const LevelProvider &levelProvider ) const
    {
      assert( (i >= 0) && (i < count()) );
      return ElementInfo::createFake( list_[ i ].el_info );
    }

    template<>
    template< class LevelProvider >
    inline typename Patch< 2 >::ElementInfo
    Patch< 2 >::elementInfo ( int i, const LevelProvider &levelProvider ) const
    {
      assert( (i >= 0) && (i < count()) );
      const MeshPointer< 2 > &mesh = levelProvider.mesh();
      const Element *element = (*this)[ i ];
      const int level = levelProvider( element );
      return ElementInfo::createFake( mesh, element, level );
    }


    template< int dim >
    inline int Patch< dim >::elementType ( int i ) const
    {
      assert( (i >= 0) && (i < count()) );
      return list_[ i ].el_info.el_type;
    }


    template< int dim >
    inline bool Patch< dim >::hasNeighbor ( int i, int neighbor ) const
    {
      return (list_[ i ].neigh[ neighbor ] != NULL);
    }

    template< int dim >
    inline int Patch< dim >::neighborIndex ( int i, int neighbor ) const
    {
      assert( hasNeighbor( i, neighbor ) );
      return (list_[ i ].neigh[ neighbor ]->no);
    }



    // ForEachInteriorSubChild
    // -----------------------

    template< int dim >
    struct ForEachInteriorSubChild< dim, 0 >
    {
      template< class Functor >
      static void apply ( Functor &functor, const Patch< dim > &patch )
      {
        for( int i = 0; i < patch.count(); ++i )
        {
          Element *const father = patch[ i ];
          functor( father->child[ 0 ], 0 );
          functor( father->child[ 1 ], 0 );
        }
      }
    };

    template< int dim >
    struct ForEachInteriorSubChild< dim, dim >
    {
      template< class Functor >
      static void apply ( Functor &functor, const Patch< dim > &patch )
      {
        functor( patch[ 0 ]->child[ 0 ], dim );
      }
    };

    template<>
    struct ForEachInteriorSubChild< 2, 1 >
    {
      template< class Functor >
      static void apply ( Functor &functor, const Patch< 2 > &patch )
      {
        // see alberta/src/2d/lagrange_2_2d.c for details
        Element *const firstFather = patch[ 0 ];

        Element *const firstChild = firstFather->child[ 0 ];
        functor( firstChild, 0 );
        functor( firstChild, 1 );

        functor( firstFather->child[ 1 ], 1 );

        if( patch.count() > 1 )
        {
          Element *const father = patch[ 1 ];
          functor( father->child[ 0 ], 1 );
        }
      }
    };

    template<>
    struct ForEachInteriorSubChild< 3, 1 >
    {
      template< class Functor >
      static void apply ( Functor &functor, const Patch< 3 > &patch )
      {
        // see alberta/src/3d/lagrange_3_3d.c for details
        Element *const firstFather = patch[ 0 ];

        Element *const firstChild = firstFather->child[ 0 ];
        functor( firstChild, 0 );
        functor( firstChild, 1 );
        functor( firstChild, 2 );

        Element *const secondChild = firstFather->child[ 1 ];
        functor( secondChild, 1 );
        functor( secondChild, 2 );

        for( int i = 1; i < patch.count(); ++i )
        {
          Element *const father = patch[ i ];
          const int type = patch.elementType( i );

          int lr_set = 0;
          if( patch.hasNeighbor( i, 0 ) && (patch.neighborIndex( i, 0 ) < i) )
            lr_set |= 1;
          if( patch.hasNeighbor( i, 1 ) && (patch.neighborIndex( i, 1 ) < i) )
            lr_set |= 2;
          assert( lr_set != 0 );

          functor( father->child[ 0 ], 0 );
          switch( lr_set )
          {
          case 1 :
            functor( father->child[ 0 ], 2 );
            functor( father->child[ 1 ], (type == 0 ? 1 : 2) );
            break;

          case 2 :
            functor( father->child[ 0 ], 1 );
            functor( father->child[ 1 ], (type == 0 ? 2 : 1) );
            break;
          }
        }
      }
    };

    template<>
    struct ForEachInteriorSubChild< 3, 2 >
    {
      template< class Functor >
      static void apply ( Functor &functor, const Patch< 3 > &patch )
      {
        // see alberta/src/3d/lagrange_2_3d.c for details
        Element *const firstFather = patch[ 0 ];

        Element *const firstChild = firstFather->child[ 0 ];
        functor( firstChild, 2 );
        functor( firstChild, 4 );
        functor( firstChild, 5 );

        functor( firstFather->child[ 1 ], 2 );

        for( int i = 1; i < patch.count(); ++i )
        {
          Element *const father = patch[ i ];

          int lr_set = 0;
          if( patch.hasNeighbor( i, 0 ) && (patch.neighborIndex( i, 0 ) < i) )
            lr_set = 1;
          if( patch.hasNeighbor( i, 1 ) && (patch.neighborIndex( i, 1 ) < i) )
            lr_set += 2;
          assert( lr_set != 0 );

          switch( lr_set )
          {
          case 1 :
            functor( father->child[ 0 ], 4 );
            break;

          case 2 :
            functor( father->child[ 0 ], 5 );
            break;
          }
        }
      }
    };



    // GeometryInFather
    // ----------------

    template< int dim >
    struct GeometryInFather;

    template<>
    struct GeometryInFather< 1 >
    {
      static const int dim = 1;

      typedef Real LocalVector[ dim ];

      static const LocalVector &
      coordinate ( int child, int orientation, int i )
      {
        static const Real coords[ 2 ][ dim+1 ][ dim ]
          = { { {0.0}, {0.5} }, { {0.5}, {1.0} } };
        assert( (i >= 0) && (i <= dim) );
        return coords[ child ][ i ];
      }
    };

    template<>
    struct GeometryInFather< 2 >
    {
      static const int dim = 2;

      typedef Real LocalVector[ dim ];

      static const LocalVector &
      coordinate ( int child, int orientation, int i )
      {
        static const Real coords[ 2 ][ dim+1 ][ dim ]
          = { { {0.0, 1.0}, {0.0, 0.0}, {0.5, 0.0} },
              { {1.0, 0.0}, {0.0, 1.0}, {0.5, 0.0} } };
        assert( (i >= 0) && (i <= dim) );
        return coords[ child ][ i ];
      }
    };

    template<>
    struct GeometryInFather< 3 >
    {
      static const int dim = 3;

      typedef Real LocalVector[ dim ];

      static const LocalVector &
      coordinate ( int child, int orientation, int i )
      {
        static const Real coords[ 2 ][ dim+1 ][ dim ]
          = { { {0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {0.5, 0.0, 0.0} },
              { {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {0.5, 0.0, 0.0} } };
        static const int flip[ 2 ][ 2 ][ dim+1 ]
          = { { {0, 1, 2, 3}, {0, 1, 2, 3} }, { {0, 2, 1, 3}, {0, 1, 2, 3} } };
        assert( (i >= 0) && (i <= dim) );
        i = flip[ child ][ orientation ][ i ];
        return coords[ child ][ i ];
      }
    };

  }

}

#endif // #if HAVE_ALBERTA

#endif