This file is indexed.

/usr/include/dune/grid/albertagrid/gridfactory.hh is in libdune-grid-dev 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

#ifndef DUNE_ALBERTA_GRIDFACTORY_HH
#define DUNE_ALBERTA_GRIDFACTORY_HH

/** \file
 *  \author Martin Nolte
 *  \brief  specialization of the generic GridFactory for AlbertaGrid
 */

#include <algorithm>
#include <limits>
#include <map>

#include <dune/common/array.hh>

#include <dune/geometry/referenceelements.hh>

#include <dune/grid/common/gridfactory.hh>

#include <dune/grid/utility/grapedataioformattypes.hh>

#include <dune/grid/albertagrid/agrid.hh>

#if HAVE_ALBERTA

namespace Dune
{

  /** \brief specialization of the generic GridFactory for AlbertaGrid
   *
   *  \ingroup GridFactory
   *
   *  The GridFactory for AlbertaGrid adds some extensions to the standard
   *  GridFactoryInterface. It provides the following additional features:
   *  - It allows to set boundary ids via insertBoundary. For ALBERTA 1.2,
   *    these boundary ids are ignored, though.
   *  - For ALBERTA 3.0 and above, you can add face transformation to identify
   *    faces. This allows the construction of periodic grids.
   *  - The grid can be written in ALBERTA's native format for macro
   *    triangulations via write (both ASCII and XDR format are supported).
   *  - On grid creation, a name can be assigned to the grid.
   *  - On grid creation, the grid can be reordered such that ALBERTA uses
   *    the longest edge as refinement edge during recursive bisection.
   *  .
   */
  template< int dim, int dimworld >
  class GridFactory< AlbertaGrid< dim, dimworld > >
    : public GridFactoryInterface< AlbertaGrid< dim, dimworld > >
  {
    typedef GridFactory< AlbertaGrid< dim, dimworld > > This;

  public:
    //! type of grid this factory is for
    typedef AlbertaGrid< dim, dimworld > Grid;

    //! type of (scalar) coordinates
    typedef typename Grid::ctype ctype;

    //! dimension of the grid
    static const int dimension = Grid::dimension;
    //! dimension of the world
    static const int dimensionworld = Grid::dimensionworld;

    //! type of vector for world coordinates
    typedef FieldVector< ctype, dimensionworld > WorldVector;
    //! type of matrix from world coordinates to world coordinates
    typedef FieldMatrix< ctype, dimensionworld, dimensionworld > WorldMatrix;

    typedef DuneBoundaryProjection< dimensionworld > DuneProjection;
    typedef Dune::shared_ptr< const DuneProjection > DuneProjectionPtr;
    typedef Dune::BoundarySegment< dimension, dimensionworld > BoundarySegment;

    template< int codim >
    struct Codim
    {
      typedef typename Grid::template Codim< codim >::Entity Entity;
    };

  private:
    typedef Dune::BoundarySegmentWrapper< dimension, dimensionworld > BoundarySegmentWrapper;

    static const int numVertices
      = Alberta::NumSubEntities< dimension, dimension >::value;

    typedef Alberta::MacroElement< dimension > MacroElement;
    typedef Alberta::ElementInfo< dimension > ElementInfo;
    typedef Alberta::MacroData< dimension > MacroData;
    typedef Alberta::NumberingMap< dimension, Alberta::Dune2AlbertaNumbering > NumberingMap;
    typedef Alberta::DuneBoundaryProjection< dimension > Projection;

    typedef array< unsigned int, dimension > FaceId;
    typedef std::map< FaceId, size_t > BoundaryMap;

    class ProjectionFactory;

  public:
    //! are boundary ids supported by this factory?
    static const bool supportsBoundaryIds = true;
    //! is the factory able to create periodic meshes?
    static const bool supportPeriodicity = MacroData::supportPeriodicity;

    /** default constructor */
    GridFactory ()
      : globalProjection_( (const DuneProjection *) 0 )
    {
      macroData_.create();
    }

    virtual ~GridFactory ();

    /** \brief insert a vertex into the macro grid
     *
     *  \param[in]  pos  position of the vertex (in world coordinates)
     */
    virtual void insertVertex ( const WorldVector &pos )
    {
      macroData_.insertVertex( pos );
    }

    /** \brief insert an element into the macro grid
     *
     *  \param[in]  type      GeometryType of the new element
     *  \param[in]  vertices  indices of the element vertices (in DUNE numbering)
     */
    virtual void insertElement ( const GeometryType &type,
                                 const std::vector< unsigned int > &vertices )
    {
      if( (int)type.dim() != dimension )
        DUNE_THROW( AlbertaError, "Inserting element of wrong dimension: " << type.dim() );
      if( !type.isSimplex() )
        DUNE_THROW( AlbertaError, "Alberta supports only simplices." );

      if( vertices.size() != (size_t)numVertices )
        DUNE_THROW( AlbertaError, "Wrong number of vertices passed: " << vertices.size() << "." );

      int array[ numVertices ];
      for( int i = 0; i < numVertices; ++i )
        array[ i ] = vertices[ numberingMap_.alberta2dune( dimension, i ) ];
      macroData_.insertElement( array );
    }

    /** \brief mark a face as boundary (and assign a boundary id)
     *
     *  \param[in]  element  index of the element, the face belongs to
     *  \param[in]  face     local number of the face within the element
     *  \param[in]  id       boundary id to assign to the face
     *
     *  \note ALBERTA supports only boundary id in the range 1,...,127.
     */
    virtual void insertBoundary ( int element, int face, int id )
    {
      if( (id <= 0) || (id > 127) )
        DUNE_THROW( AlbertaError, "Invalid boundary id: " << id << "." );
      macroData_.boundaryId( element, numberingMap_.dune2alberta( 1, face ) ) = id;
    }

    /** \brief insert a boundary projection into the macro grid
     *
     *  \param[in]  type        geometry type of boundary face
     *  \param[in]  vertices    vertices of the boundary face
     *  \param[in]  projection  boundary projection
     *
     *  \note The grid takes control of the projection object.
     */
    virtual void
    insertBoundaryProjection ( const GeometryType &type,
                               const std::vector< unsigned int > &vertices,
                               const DuneProjection *projection )
    {
      if( (int)type.dim() != dimension-1 )
        DUNE_THROW( AlbertaError, "Inserting boundary face of wrong dimension: " << type.dim() );
      if( !type.isSimplex() )
        DUNE_THROW( AlbertaError, "Alberta supports only simplices." );

      FaceId faceId;
      if( vertices.size() != faceId.size() )
        DUNE_THROW( AlbertaError, "Wrong number of face vertices passed: " << vertices.size() << "." );
      for( size_t i = 0; i < faceId.size(); ++i )
        faceId[ i ] = vertices[ i ];
      std::sort( faceId.begin(), faceId.end() );

      typedef std::pair< typename BoundaryMap::iterator, bool > InsertResult;
      const InsertResult result = boundaryMap_.insert( std::make_pair( faceId, boundaryProjections_.size() ) );
      if( !result.second )
        DUNE_THROW( GridError, "Only one boundary projection can be attached to a face." );
      boundaryProjections_.push_back( DuneProjectionPtr( projection ) );
    }


    /** \brief insert a global (boundary) projection into the macro grid
     *
     *  \param[in]  projection  global (boundary) projection
     *
     *  \note The grid takes control of the projection object.
     */
    virtual void insertBoundaryProjection ( const DuneProjection *projection )
    {
      if( globalProjection_ )
        DUNE_THROW( GridError, "Only one global boundary projection can be attached to a grid." );
      globalProjection_ = DuneProjectionPtr( projection );
    }

    /** \brief insert a boundary segment into the macro grid
     *
     *  Only influences the ordering of the boundary segments
     *  \param[in]  vertices         vertex indices of boundary face
     */
    virtual void
    insertBoundarySegment ( const std::vector< unsigned int >& vertices )
    {
      typedef typename GenericGeometry::SimplexTopology< dimension-1 >::type Topology;
      insertBoundaryProjection( GeometryType( Topology() ), vertices, 0 );
    }

    /** \brief insert a shaped boundary segment into the macro grid
     *
     *  \param[in]  vertices         vertex indices of boundary face
     *  \param[in]  boundarySegment  geometric realization of shaped boundary
     */
    virtual void
    insertBoundarySegment ( const std::vector< unsigned int > &vertices,
                            const shared_ptr< BoundarySegment > &boundarySegment )
    {
      const ReferenceElement< ctype, dimension-1 > &refSimplex
        = ReferenceElements< ctype, dimension-1 >::simplex();

      if( !boundarySegment )
        DUNE_THROW( GridError, "Trying to insert null as a boundary segment." );
      if( (int)vertices.size() != refSimplex.size( dimension-1 ) )
        DUNE_THROW( GridError, "Wrong number of face vertices passed: " << vertices.size() << "." );

      std::vector< WorldVector > coords( refSimplex.size( dimension-1 ) );
      for( int i = 0; i < dimension; ++i )
      {
        Alberta::GlobalVector &x = macroData_.vertex( vertices[ i ] );
        for( int j = 0; j < dimensionworld; ++j )
          coords[ i ][ j ] = x[ j ];
        if( ((*boundarySegment)( refSimplex.position( i, dimension-1 ) ) - coords[ i ]).two_norm() > 1e-6 )
          DUNE_THROW( GridError, "Boundary segment does not interpolate the corners." );
      }

      const GeometryType gt = refSimplex.type( 0, 0 );
      const DuneProjection *prj = new BoundarySegmentWrapper( gt, coords, boundarySegment );
      insertBoundaryProjection( gt, vertices, prj );
    }

    /** \brief add a face transformation (for periodic identification)
     *
     *  A face transformation is an affine mapping T from world coordinates
     *  to world coordinates. ALBERTA periodically identifies two faces f and g
     *  if T( f ) = g or T( g ) = f.
     *
     *  \param[in]  matrix  matrix describing the linear part of T
     *  \param[in]  shift   vector describing T( 0 )
     *
     *  \note ALBERTA requires the matrix to be orthogonal.
     *
     *  \note ALBERTA automatically adds the inverse transformation.
     */
    void insertFaceTransformation ( const WorldMatrix &matrix, const WorldVector &shift );

    /** \brief mark the longest edge as refinemet edge
     *
     *  Marking the longest edge avoids cycles in the recursive bisection
     *  algorithm, if the longest edge of each element is unique. It also
     *  makes sure the angles degenerate least. It can, hoowever, produce
     *  more nonlocal refinements than necessary. Therefore this feature is
     *  disabled by default.
     */
    void markLongestEdge ()
    {
      macroData_.markLongestEdge();
    }

    /** \brief finalize grid creation and hand over the grid
     *
     *  This version of createGrid is original to the AlbertaGrid grid factroy,
     *  allowing to specity a grid name.
     *
     *  \returns a pointer to the newly created grid
     *
     *  \note The caller takes responsibility of freeing the memory allocated
     *        for the grid.
     *  \note ALBERTA's grid factory provides a static method for freeing the
     *        grid (destroyGrid).
     */
    Grid *createGrid ()
    {
      macroData_.finalize();
      if( macroData_.elementCount() == 0 )
        DUNE_THROW( GridError, "Cannot create empty AlbertaGrid." );
      if( dimension < 3 )
        macroData_.setOrientation( Alberta::Real( 1 ) );
      assert( macroData_.checkNeighbors() );
      macroData_.checkCycles();
      ProjectionFactory projectionFactory( *this );
      return new Grid( macroData_, projectionFactory );
    }

    /** \brief destroy a grid previously obtain from this factory
     *
     *  \param[in]  grid  pointer to the grid to destroy
     */
    static void destroyGrid ( Grid *grid )
    {
      delete grid;
    }

    /** \brief write out the macro triangulation in native grid file format
     *
     *  \tparam  type  type of file to write (either ascii or xdr)
     *
     *  \param[in]  filename  name of the file to write to
     *
     *  \returns \c true on success
     */
    template< GrapeIOFileFormatType type >
    bool write ( const std::string &filename )
    {
      dune_static_assert( type != pgm, "AlbertaGridFactory: writing pgm format is not supported." );
      macroData_.finalize();
      if( dimension < 3 )
        macroData_.setOrientation( Alberta::Real( 1 ) );
      assert( macroData_.checkNeighbors() );
      return macroData_.write( filename, (type == xdr) );
    }

    /** \brief write out the macro triangulation in native grid file format
     *
     *  The grid is written in human readable form (ascii).
     *
     *  \param[in]  filename  name of the file to write to
     *
     *  \returns \c true on success
     */
    virtual bool write ( const std::string &filename )
    {
      return write< ascii >( filename );
    }

    virtual unsigned int
    insertionIndex ( const typename Codim< 0 >::Entity &entity ) const
    {
      return insertionIndex( Grid::getRealImplementation( entity ).elementInfo() );
    }

    virtual unsigned int
    insertionIndex ( const typename Codim< dimension >::Entity &entity ) const
    {
      const int elIndex = insertionIndex( Grid::getRealImplementation( entity ).elementInfo() );
      const typename MacroData::ElementId &elementId = macroData_.element( elIndex );
      return elementId[ Grid::getRealImplementation( entity ).subEntity() ];
    }

    virtual unsigned int
    insertionIndex ( const typename Grid::LeafIntersection &intersection ) const
    {
      const Grid &grid = Grid::getRealImplementation( intersection ).grid();
      const ElementInfo &elementInfo = Grid::getRealImplementation( intersection ).elementInfo();
      const int face = grid.generic2alberta( 1, intersection.indexInInside() );
      return insertionIndex( elementInfo, face );
    }

    virtual bool
    wasInserted ( const typename Grid::LeafIntersection &intersection ) const
    {
      return (insertionIndex( intersection ) < std::numeric_limits< unsigned int >::max());
    }

  private:
    unsigned int insertionIndex ( const ElementInfo &elementInfo ) const;
    unsigned int insertionIndex ( const ElementInfo &elementInfo, const int face ) const;

    FaceId faceId ( const ElementInfo &elementInfo, const int face ) const;

    MacroData macroData_;
    NumberingMap numberingMap_;
    DuneProjectionPtr globalProjection_;
    BoundaryMap boundaryMap_;
    std::vector< DuneProjectionPtr > boundaryProjections_;
  };


  template< int dim, int dimworld >
  GridFactory< AlbertaGrid< dim, dimworld > >::~GridFactory ()
  {
    macroData_.release();
  }


  template< int dim, int dimworld >
  inline void
  GridFactory< AlbertaGrid< dim, dimworld > >
  ::insertFaceTransformation ( const WorldMatrix &matrix, const WorldVector &shift )
  {
    // make sure the matrix is orthogonal
    for( int i = 0; i < dimworld; ++i )
      for( int j = 0; j < dimworld; ++j )
      {
        const ctype delta = (i == j ? ctype( 1 ) : ctype( 0 ));
        const ctype epsilon = (8*dimworld)*std::numeric_limits< ctype >::epsilon();

        if( std::abs( matrix[ i ] * matrix[ j ] - delta ) > epsilon )
        {
          DUNE_THROW( AlbertaError,
                      "Matrix of face transformation is not orthogonal." );
        }
      }

    // copy matrix
    Alberta::GlobalMatrix M;
    for( int i = 0; i < dimworld; ++i )
      for( int j = 0; j < dimworld; ++j )
        M[ i ][ j ] = matrix[ i ][ j ];

    // copy shift
    Alberta::GlobalVector t;
    for( int i = 0; i < dimworld; ++i )
      t[ i ] = shift[ i ];

    // insert into ALBERTA macro data
    macroData_.insertWallTrafo( M, t );
  }


  template< int dim, int dimworld >
  inline unsigned int
  GridFactory< AlbertaGrid< dim, dimworld > >
  ::insertionIndex ( const ElementInfo &elementInfo ) const
  {
    const MacroElement &macroElement = elementInfo.macroElement();
    const unsigned int index = macroElement.index;

#ifndef NDEBUG
    const typename MacroData::ElementId &elementId = macroData_.element( index );
    for( int i = 0; i <= dimension; ++i )
    {
      const Alberta::GlobalVector &x = macroData_.vertex( elementId[ i ] );
      const Alberta::GlobalVector &y = macroElement.coordinate( i );
      for( int j = 0; j < dimensionworld; ++j )
      {
        if( x[ j ] != y[ j ] )
          DUNE_THROW( GridError, "Vertex in macro element does not coincide with same vertex in macro data structure." );
      }
    }
#endif // #ifndef NDEBUG

    return index;
  }


  template< int dim, int dimworld >
  inline unsigned int
  GridFactory< AlbertaGrid< dim, dimworld > >
  ::insertionIndex ( const ElementInfo &elementInfo, const int face ) const
  {
    typedef typename BoundaryMap::const_iterator Iterator;
    const Iterator it = boundaryMap_.find( faceId( elementInfo, face ) );
    if( it != boundaryMap_.end() )
      return it->second;
    else
      return std::numeric_limits< unsigned int >::max();
  }


  template< int dim, int dimworld >
  inline typename GridFactory< AlbertaGrid< dim, dimworld > >::FaceId
  GridFactory< AlbertaGrid< dim, dimworld > >
  ::faceId ( const ElementInfo &elementInfo, const int face ) const
  {
    const unsigned int index = insertionIndex( elementInfo );
    const typename MacroData::ElementId &elementId = macroData_.element( index );

    FaceId faceId;
    for( size_t i = 0; i < faceId.size(); ++i )
    {
      const int k = Alberta::MapVertices< dimension, 1 >::apply( face, i );
      faceId[ i ] = elementId[ k ];
    }
    std::sort( faceId.begin(), faceId.end() );
    return faceId;
  }



  // GridFactory::ProjectionFactory
  // ------------------------------

  template< int dim, int dimworld >
  class GridFactory< AlbertaGrid< dim, dimworld > >::ProjectionFactory
    : public Alberta::ProjectionFactory< Alberta::DuneBoundaryProjection< dim >, ProjectionFactory >
  {
    typedef ProjectionFactory This;
    typedef Alberta::ProjectionFactory< Alberta::DuneBoundaryProjection< dim >, ProjectionFactory > Base;

    typedef typename Dune::GridFactory< AlbertaGrid< dim, dimworld > > Factory;

  public:
    typedef typename Base::Projection Projection;
    typedef typename Base::ElementInfo ElementInfo;

    typedef typename Projection::Projection DuneProjection;

    ProjectionFactory( const GridFactory &gridFactory )
      : gridFactory_( gridFactory )
    {}

    bool hasProjection ( const ElementInfo &elementInfo, const int face ) const
    {
      if( gridFactory().globalProjection_ )
        return true;

      const unsigned int index = gridFactory().insertionIndex( elementInfo, face );
      if( index < std::numeric_limits< unsigned int >::max() )
        return bool( gridFactory().boundaryProjections_[ index ] );
      else
        return false;
    }

    bool hasProjection ( const ElementInfo &elementInfo ) const
    {
      return bool( gridFactory().globalProjection_ );
    }

    Projection projection ( const ElementInfo &elementInfo, const int face ) const
    {
      const unsigned int index = gridFactory().insertionIndex( elementInfo, face );
      if( index < std::numeric_limits< unsigned int >::max() )
      {
        const DuneProjectionPtr &projection = gridFactory().boundaryProjections_[ index ];
        if( projection )
          return Projection( projection );
      }

      assert( gridFactory().globalProjection_ );
      return Projection( gridFactory().globalProjection_ );
    };

    Projection projection ( const ElementInfo &elementInfo ) const
    {
      assert( gridFactory().globalProjection_ );
      return Projection( gridFactory().globalProjection_ );
    };

    const GridFactory &gridFactory () const
    {
      return gridFactory_;
    }

  private:
    const GridFactory &gridFactory_;
  };

}

#endif // #if HAVE_ALBERTA

#endif // #ifndef DUNE_ALBERTA_GRIDFACTORY_HH