This file is indexed.

/usr/include/dolfin/la/STLMatrix.h is in libdolfin-dev 1.4.0+dfsg-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// Copyright (C) 2007-2012 Anders Logg
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// Modified by Ola Skavhaug 2007
// Modified by Garth N. Wells 2007, 2009
// Modified by Ilmar Wilbers 2008
//
// First added:  2007-01-17
// Last changed: 2012-08-20

#ifndef __DOLFIN_STL_MATRIX_H
#define __DOLFIN_STL_MATRIX_H

#include <string>
#include <utility>
#include <vector>
#include <boost/unordered_map.hpp>

#include <dolfin/common/types.h>
#include <dolfin/log/log.h>
#include "TensorLayout.h"
#include "GenericMatrix.h"

#include <dolfin/log/dolfin_log.h>

namespace dolfin
{

  class GenericSparsityPattern;
  class GenericVector;

  /// Simple STL-based implementation of the GenericMatrix interface.
  /// The sparse matrix is stored as a pair of std::vector of
  /// std::vector, one for the columns and one for the values.
  ///
  /// Historically, this class has undergone a number of different
  /// incarnations, based on various combinations of std::vector,
  /// std::set and std::map. The current implementation has proven to
  /// be the fastest.

  class STLMatrix : public GenericMatrix
  {
  public:

    /// Create empty matrix
  STLMatrix(std::size_t primary_dim=0) : _mpi_comm(MPI_COMM_SELF),
      _primary_dim(primary_dim), _block_size(1), _local_range(0, 0),
      num_codim_entities(0) {}

    /// Destructor
    virtual ~STLMatrix() {}

    ///--- Implementation of the GenericTensor interface ---

    /// Initialize zero tensor using sparsity pattern
    virtual void init(const TensorLayout& tensor_layout);

    /// Return true if empty
    virtual bool empty() const
    { return _values.empty(); }

    /// Return size of given dimension
    virtual std::size_t size(std::size_t dim) const;

    /// Return local ownership range
    virtual std::pair<std::size_t, std::size_t>
      local_range(std::size_t dim) const;

    /// Set all entries to zero and keep any sparse structure
    virtual void zero();

    /// Finalize assembly of tensor
    virtual void apply(std::string mode);

    /// Return MPI communicator
    virtual MPI_Comm mpi_comm() const
    { return _mpi_comm; }

    /// Return informal string representation (pretty-print)
    virtual std::string str(bool verbose) const;

    //--- Implementation of the GenericMatrix interface ---

    /// Return copy of matrix
    virtual std::shared_ptr<GenericMatrix> copy() const
    {
      std::shared_ptr<GenericMatrix> A(new STLMatrix(*this));
      return A;
    }

    /// Initialize vector z to be compatible with the matrix-vector
    /// product y = Ax. In the parallel case, both size and layout are
    /// important.
    ///
    /// *Arguments*
    ///     dim (std::size_t)
    ///         The dimension (axis): dim = 0 --> z = y, dim = 1 --> z = x
    virtual void init_vector(GenericVector& z, std::size_t dim) const
    { dolfin_not_implemented(); }

    /// Get block of values
    virtual void get(double* block, std::size_t m,
                     const dolfin::la_index* rows, std::size_t n,
                     const dolfin::la_index* cols) const
    { dolfin_not_implemented(); }

    /// Set block of values
    virtual void set(const double* block, std::size_t m,
                     const dolfin::la_index* rows, std::size_t n,
                     const dolfin::la_index* cols)
    { dolfin_not_implemented(); }

    /// Add block of values
    virtual void add(const double* block, std::size_t m,
                     const dolfin::la_index* rows, std::size_t n,
                     const dolfin::la_index* cols);

    /// Add multiple of given matrix (AXPY operation)
    virtual void axpy(double a, const GenericMatrix& A,
                      bool same_nonzero_pattern)
    { dolfin_not_implemented(); }

    /// Return norm of matrix
    virtual double norm(std::string norm_type) const;

    /// Get non-zero values of given row
    virtual void getrow(std::size_t row, std::vector<std::size_t>& columns,
                        std::vector<double>& values) const;

    /// Set values for given row
    virtual void setrow(std::size_t row,
                        const std::vector<std::size_t>& columns,
                        const std::vector<double>& values)
    { dolfin_not_implemented(); }

    /// Set given rows to zero
    virtual void zero(std::size_t m, const dolfin::la_index* rows)
    { dolfin_not_implemented(); }

    /// Set given rows to identity matrix
    virtual void ident(std::size_t m, const dolfin::la_index* rows);

    // Matrix-vector product, y = Ax
    virtual void mult(const GenericVector& x, GenericVector& y) const
    { dolfin_not_implemented(); }

    // Matrix-vector product, y = A^T x
    virtual void transpmult(const GenericVector& x, GenericVector& y) const
    { dolfin_not_implemented(); }

    /// Set diagonal of a matrix
    virtual void set_diagonal(const GenericVector& x)
    { dolfin_not_implemented(); }

    /// Multiply matrix by given number
    virtual const STLMatrix& operator*= (double a);

    /// Divide matrix by given number
    virtual const STLMatrix& operator/= (double a);

    /// Assignment operator
    virtual const GenericMatrix& operator= (const GenericMatrix& A)
    { dolfin_not_implemented(); return *this; }

    ///--- Specialized matrix functions ---

    /// Return linear algebra backend factory
    virtual GenericLinearAlgebraFactory& factory() const;

    ///--- STLMatrix interface ---

    /// Return matrix block size
    std::size_t block_size() const
    { return _block_size; }

    /// Clear matrix. Destroys data and sparse layout
    void clear()
    {
      _local_range = std::pair<std::size_t, std::size_t>(0, 0);
      num_codim_entities = 0;
      _values.clear();
      off_processs_data.clear();
    }

    void sort()
    {
      std::vector<std::vector<std::pair<std::size_t, double> > >::iterator row;
      for (row = _values.begin(); row < _values.end(); ++row)
        std::sort(row->begin(), row->end());
    }

    /// Return matrix in CSR format
    template<typename T>
    void csr(std::vector<double>& vals, std::vector<T>& cols,
             std::vector<T>& row_ptr,
             std::vector<T>& local_to_global_row,
             bool block,
             bool symmetric) const;

    /// Return matrix in CSC format
    template<typename T>
    void csc(std::vector<double>& vals, std::vector<T>& rows,
             std::vector<T>& col_ptr,
             std::vector<T>& local_to_global_col,
             bool block,
             bool symmetric) const;

    /// Return number of global non-zero entries
    std::size_t nnz() const;

    /// Return number of local non-zero entries
    std::size_t local_nnz() const;

  private:

    // MPI communicator
    MPI_Comm _mpi_comm;

    /// Return matrix in compressed format
    template<typename T>
    void compressed_storage(std::vector<double>& vals,
                            std::vector<T>& rows,
                            std::vector<T>& col_ptr,
                            std::vector<T>& local_to_global_col,
                            bool block,
                            bool symmetric) const;

    // Primary dimension (0=row-wise storage, 1=column-wise storage)
    const std::size_t _primary_dim;

    // Block size, e.g. 3 for 3D elasticity with appropriate dof ordering
    std::size_t _block_size;

    // Local ownership range (row range for row-wise storage, column
    // range for column-wise storage)
    std::pair<std::size_t, std::size_t> _local_range;

    // Number of columns (row-wise storage) or number of rows (column-wise
    // storage)
    std::size_t num_codim_entities;

    // Storage of non-zero matrix values
    std::vector<std::vector<std::pair<std::size_t, double> > > _values;

    // Off-process data ([i, j], value)
    boost::unordered_map<std::pair<std::size_t, std::size_t>, double>
      off_processs_data;

  };

  //---------------------------------------------------------------------------
  // Implementation of templated functions
  //---------------------------------------------------------------------------
  template<typename T>
  void STLMatrix::csr(std::vector<double>& vals, std::vector<T>& cols,
                      std::vector<T>& row_ptr,
                      std::vector<T>& local_to_global_row,
                      bool block,
                      bool symmetric) const
  {
    if (_primary_dim != 0)
    {
      dolfin_error("STLMatrix.cpp",
                   "creating compressed row storage data",
                   "Cannot create CSR matrix from STLMatrix with column-wise storage.");
    }
    compressed_storage(vals, cols, row_ptr, local_to_global_row, block,
                       symmetric);
  }
  //---------------------------------------------------------------------------
  template<typename T>
  void STLMatrix::csc(std::vector<double>& vals, std::vector<T>& rows,
                      std::vector<T>& col_ptr,
                      std::vector<T>& local_to_global_col,
                      bool block,
                      bool symmetric) const
  {
    if (_primary_dim != 1)
    {
      dolfin_error("STLMatrix.cpp",
                   "creating compressed column storage data",
                   "Cannot create CSC matrix from STLMatrix with row-wise storage.");
    }
    compressed_storage(vals, rows, col_ptr, local_to_global_col, block,
                       symmetric);
  }
  //---------------------------------------------------------------------------
  template<typename T>
  void STLMatrix::compressed_storage(std::vector<double>& vals,
                                     std::vector<T>& cols,
                                     std::vector<T>& row_ptr,
                                     std::vector<T>& local_to_global_row,
                                     bool block,
                                     bool symmetric) const
  {
    // Reset data structures
    vals.clear();
    cols.clear();
    row_ptr.clear();
    local_to_global_row.clear();

    // Reserve memory
    row_ptr.reserve(_values.size() + 1);
    local_to_global_row.reserve(_values.size());

    // Build CSR data structures
    row_ptr.push_back(0);

    // Number of local non-zero entries
    const std::size_t _local_nnz = local_nnz();

    // Number of local rows (columns)
    const std::size_t num_local_rows = _values.size();

    if (!symmetric)
    {
      // Reserve memory
      vals.reserve(_local_nnz);
      cols.reserve(_local_nnz);

      // Build data structures
      for (std::size_t local_row = 0; local_row < num_local_rows;
           local_row += _block_size)
      {
        for (std::size_t column = 0; column < _values[local_row].size();
             column += _block_size)
        {
          cols.push_back(_values[local_row][column].first/_block_size);
          for (std::size_t b0 = 0; b0 < _block_size; ++b0)
            for (std::size_t b1 = 0; b1 < _block_size; ++b1)
              vals.push_back(_values[local_row + b0][column + b1].second);
        }
        local_to_global_row.push_back((_local_range.first
                                       + local_row)/_block_size);
        row_ptr.push_back(row_ptr.back()+_values[local_row].size()/_block_size);
      }
    }
    else
    {
      // Reserve memory
      vals.reserve((_local_nnz - num_local_rows)/2 + num_local_rows);
      cols.reserve((_local_nnz - num_local_rows)/2 + num_local_rows);

      // Build data structures
      for (std::size_t local_row = 0; local_row < _values.size();
           local_row += _block_size)
      {
        const std::size_t global_row_index
          = (local_row + _local_range.first)/_block_size;
        std::size_t counter = 0;
        for (std::size_t column = 0; column < _values[local_row].size();
             column += _block_size)
        {
          const std::size_t index
            = _values[local_row][column].first/_block_size;
          if (index >= global_row_index)
          {
            cols.push_back(index);
            for (std::size_t b0 = 0; b0 < _block_size; ++b0)
              for (std::size_t b1 = 0; b1 < _block_size; ++b1)
                vals.push_back(_values[local_row + b0][column + b1].second);
            ++counter;
          }
        }
        local_to_global_row.push_back(global_row_index);
        row_ptr.push_back(row_ptr.back() + counter);
      }
    }
  }
//-----------------------------------------------------------------------------

}

#endif