/usr/include/CLAM/SpectrumInterpolator.hxx is in libclam-dev 1.4.0-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | /*
* Copyright (c) 2001-2004 MUSIC TECHNOLOGY GROUP (MTG)
* UNIVERSITAT POMPEU FABRA
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef _SPECTRUM_InterpolateER2_
#define _SPECTRUM_InterpolateER2_
#include "Processing.hxx"
#include "DynamicType.hxx"
#include "InPort.hxx"
#include "OutPort.hxx"
#include "Spectrum.hxx"
#include "InControl.hxx"
namespace CLAM {
class SpecInterpConfig: public ProcessingConfig
{
public:
DYNAMIC_TYPE_USING_INTERFACE (SpecInterpConfig, 1,ProcessingConfig);
DYN_ATTRIBUTE(0, public, TData, InterpolationFactor);
protected:
void DefaultInit();
};
/** This calss performs the interpolation of two Spectrum processing data
* objects.
* <p>
* It Allows any possible attribute configuration in its inputs and in
* its output, but it performs faster when prototype configuration of
* the data is specified using SetPrototypes(...), in certain
* situations:
* <ul>
* <li> When all the inputs and the outputs have a common attirbute
* (not the BPF), and the same scale.
* <li> When one of the inputs has just a BPF attribute, and both the
* other input and the output have a common (non-BPF) attribute
* with the same scale in both objects.
* <li> In other cases, at least a vector conversion will be executed
* in one of the involved processing data objects. In some bad
* situations two conversions might be needed.
* </ul><p>
* @todo
* Possible optimisations (which require more states):
* <ul>
* <li> Implement direct sum routines with inputs/outpust in
* different formats, and Interpolate the corresponding prototype states.
* <li> Expand the state space to avoid checking if the attribute to be
* used in the computation is instantiated in each of the objects.
* Right now the same state is used when the three objects have a
* common attribute, and when a common attribute is to be used, but
* some of the objects lack it (and need format conversion).
* </ul>
* <p>
* The BPFxBPF sum is being thought. If both BPFs have the same
* range and point possition, the way to go is obvious, but in other
* situations it is not so simple. Whe should probably merge both
* BPFs, into a new BPF. */
class SpectrumInterpolator: public Processing
{
typedef SpecInterpConfig Config;
Config mConfig;
/** Size of the input/output vectors */
int mSize;
InPort<Spectrum> mIn1;
InPort<Spectrum> mIn2;
OutPort<Spectrum> mOut;
/** Possible configuration/prototype states */
typedef enum {
// Type states in with the same attribute is used for all
// of the inputs and the outputs (it may or may not be
// present; in the second case it will be Interpolateed at Do(...)
// time.
SMagPhase, SComplex, SPolar,
// BPF output sum
SBPF,
// Type states with only a BPF attribute in one of the
// inputs, other type in the other input and the
// output. The non-BPF attribute may or may not be
// instantiated. In the second case it will be Interpolateed at
// Do(...) time.
SBPFMagPhase, SBPFComplex, SBPFPolar, SMagPhaseBPF,
SComplexBPF, SPolarBPF,
// State in which nothing is known about prototypes.
SOther
} PrototypeState;
/** Possible scale combinations */
typedef enum { Slinlin, Sloglog, Slinlog, Sloglin} ScaleState;
/** Config/Prototype state */
PrototypeState mProtoState;
/** Scale combination state */
ScaleState mScaleState;
const char *GetClassName() const {return "SpectrumInterpolator";}
/** Config change method
* @pre argument should be an SpecInterpConfig
*/
bool ConcreteConfigure(const ProcessingConfig&);
public:
SpectrumInterpolator(const SpecInterpConfig &c=Config());
~SpectrumInterpolator() {};
const ProcessingConfig &GetConfig() const { return mConfig;}
bool Do(void);
// FIXME bool Do(const Spectrum& in1, const Spectrum& in2, Spectrum& out);
bool Do(Spectrum& in1, Spectrum& in2, Spectrum& out);
// Port interfaces.
/** Change the internal type state.
* Apart from prototype configuration, the Size, Scale and
* SpectralRange attributes of each Spectrum are also
* checked.
*/
bool SetPrototypes(const Spectrum& in1,const Spectrum& in2,const Spectrum& out);
bool SetPrototypes();
bool UnsetPrototypes();
bool MayDisableExecution() const {return true;}
/** Input control for interpolation factor */
FloatInControl mInterpolationFactorCtl;
private:
/** Unoptimised internal multiplication method, when
* prototypes are not known (state SOther)
*/
inline void Interpolate(Spectrum& in1, Spectrum& in2, Spectrum& out);
// Interpolateer methods for optimized configurations of the inputs/output
// Direct sums
inline void InterpolateMagPhase(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateMagPhaseLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateMagPhaseLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateMagPhaseLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateComplex(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateComplexLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateComplexLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateComplexLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolatePolar(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolatePolarLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolatePolarLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolatePolarLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
// BPF Interpolateer
inline void InterpolateBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
// Interpolateing BPFs to non-BPFs.
inline void InterpolateBPFLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFMagPhase(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateMagPhaseBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFMagPhaseLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFMagPhaseLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFMagPhaseLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFMagPhaseLogLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFComplex(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateComplexBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFComplexLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFComplexLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFComplexLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFComplexLogLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFPolar(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolatePolarBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFPolarLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFPolarLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFPolarLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
inline void InterpolateBPFPolarLogLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
};
}
#endif // _SPECTRUM_InterpolateER_
|