/usr/include/CLAM/CLAM_Math.hxx is in libclam-dev 1.4.0-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | /*
* Copyright (c) 2004 MUSIC TECHNOLOGY GROUP (MTG)
* UNIVERSITAT POMPEU FABRA
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef __CLAM_MATH__
#define __CLAM_MATH__
#include <cmath>
#include "DataTypes.hxx"
#include "FastRounding.hxx"
//The following constants are defined also in OSDefines but only for windows and using the #define preprocessor
//directive. It is much better to use const float declarations
const float PI_ = 3.1415926535897932384626433832795028841972; /* pi */
const float ONE_OVER_PI = (0.3183098861837906661338147750939f);
const float TWOPI = (6.2831853071795864769252867665590057683943f); /* 2*pi */
const float ONE_OVER_TWOPI = (0.15915494309189535682609381638f);
const float PI_2 = (1.5707963267948966192313216916397514420986f); /* pi/2 */
const float TWO_OVER_PI = (0.636619772367581332267629550188f);
const float LN2 = (0.6931471805599453094172321214581765680755f); /* ln(2) */
const float ONE_OVER_LN2 = (1.44269504088896333066907387547f);
const float LN10 = (2.3025850929940456840179914546843642076011f); /* ln(10) */
const float ONE_OVER_LN10 = (0.43429448190325177635683940025f);
const float LN2_OVER_LN10 = LN2*ONE_OVER_LN10;
const float TIMES20LN2_OVER_LN10 = 20*LN2_OVER_LN10;
const long LONG_OFFSET = 4096L;
const float FLOAT_OFFSET = 4096.0;
const float HUGE_ = 1.0e8;
const float ROOT2 = (1.4142135623730950488016887242096980785697f); /* sqrt(2) */
/** Efficient versions of common functions*/
inline float CLAM_sin(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) sin((double)x);
#else
x *= ONE_OVER_PI;
register float accumulator, xPower, xSquared;
register long evenIntPart = ((long)(0.5f*x + 1024.5) - 1024)<<1;
x -= (float)evenIntPart;
xSquared = x*x;
accumulator = 3.14159265358979f*x;
xPower = xSquared*x;
accumulator += -5.16731953364340f*xPower;
xPower *= xSquared;
accumulator += 2.54620566822659f*xPower;
xPower *= xSquared;
accumulator += -0.586027023087261f*xPower;
xPower *= xSquared;
accumulator += 0.06554823491427f*xPower;
return accumulator;
#endif
}
inline float CLAM_cos(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) cos((double)x);
#else
x *= ONE_OVER_PI;
register float accumulator, xPower, xSquared;
register long evenIntPart = ((long)(0.5f*x + 1024.5f) - 1024)<<1;
x -= (float)evenIntPart;
xSquared = x*x;
accumulator = 1.57079632679490f*x; /* series for sin(PI/2*x) */
xPower = xSquared*x;
accumulator += -0.64596406188166f*xPower;
xPower *= xSquared;
accumulator += 0.07969158490912f*xPower;
xPower *= xSquared;
accumulator += -0.00467687997706f*xPower;
xPower *= xSquared;
accumulator += 0.00015303015470f*xPower;
return 1.0f - 2.0f*accumulator*accumulator; /* cos(w) = 1 - 2*(sin(w/2))^2 */
#endif
}
inline float CLAM_atan(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) atan((double)x);
#else
register float accumulator, xPower, xSquared, offset;
offset = 0.0f;
if (x < -1.0f)
{
offset = -PI_2;
x = -1.0f/x;
}
else if (x > 1.0f)
{
offset = PI_2;
x = -1.0f/x;
}
xSquared = x*x;
accumulator = 1.0f;
xPower = xSquared;
accumulator += 0.33288950512027f*xPower;
xPower *= xSquared;
accumulator += -0.08467922817644f*xPower;
xPower *= xSquared;
accumulator += 0.03252232640125f*xPower;
xPower *= xSquared;
accumulator += -0.00749305860992f*xPower;
return offset + x/accumulator;
#endif
}
inline float CLAM_atan2(float Imag, float Real)
{
#ifndef CLAM_OPTIMIZE
return (float) atan2((double)Imag, (double)Real);
#else
if(Real==0 && Imag==0) return 0.f;
register float accumulator, xPower, xSquared, offset, x;
if (Imag > 0.0f)
{
if (Imag <= -Real)
{
offset = PI_;
x = Imag/Real;
}
else if (Imag > Real)
{
offset = PI_2;
x = -Real/Imag;
}
else
{
offset = 0.0f;
x = Imag/Real;
}
}
else
{
if (Imag >= Real)
{
offset = -PI_;
x = Imag/Real;
}
else if (Imag < -Real)
{
offset = -PI_2;
x = -Real/Imag;
}
else
{
offset = 0.0f;
x = Imag/Real;
}
}
xSquared = x*x;
accumulator = 1.0f;
xPower = xSquared;
accumulator += 0.33288950512027f*xPower;
xPower *= xSquared;
accumulator += -0.08467922817644f*xPower;
xPower *= xSquared;
accumulator += 0.03252232640125f*xPower;
xPower *= xSquared;
accumulator += -0.00749305860992f*xPower;
return offset + x/accumulator;
#endif
}
inline float CLAM_exp2(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) exp(LN2*(double)x);
#else
if (x >= -127.0f)
{
register float accumulator, xPower;
register union {float f; long i;} xBits;
xBits.i = (long)(x + FLOAT_OFFSET) - LONG_OFFSET; /* integer part */
x -= (float)(xBits.i); /* fractional part */
accumulator = 1.0f + 0.69303212081966f*x;
xPower = x*x;
accumulator += 0.24137976293709f*xPower;
xPower *= x;
accumulator += 0.05203236900844f*xPower;
xPower *= x;
accumulator += 0.01355574723481f*xPower;
xBits.i += 127; /* bias integer part */
xBits.i <<= 23; /* move biased int part into exponent bits */
return accumulator * xBits.f;
}
else
{
return 0.0f;
}
#endif
}
inline float CLAM_log2(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) (ONE_OVER_LN2*log((double)x));
#else
if (x > 5.877471754e-39f)
{
register float accumulator, xPower;
register long intPart;
register union {float f; long i;} xBits;
xBits.f = x;
intPart = ((xBits.i)>>23); /* get biased exponent */
intPart -= 127; /* unbias it */
x = (float)(xBits.i & 0x007FFFFF); /* mask off exponent leaving 0x800000*(mantissa - 1) */
x *= 1.192092895507812e-07f; /* divide by 0x800000 */
accumulator = 1.44254494359510f*x;
xPower = x*x;
accumulator += -0.71814525675041f*xPower;
xPower *= x;
accumulator += 0.45754919692582f*xPower;
xPower *= x;
accumulator += -0.27790534462866f*xPower;
xPower *= x;
accumulator += 0.12179791068782f*xPower;
xPower *= x;
accumulator += -0.02584144982967f*xPower;
return accumulator + (float)intPart;
}
else
{
return -HUGE_;
}
#endif
}
inline float CLAM_pow(float x, float y)
{
#ifndef CLAM_OPTIMIZE
return (float) pow((double)x, (double)y);
#else
return CLAM_exp2(y*CLAM_log2(x));
#endif
}
inline float CLAM_sqrt(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) sqrt((double)x);
#else
if (x > 5.877471754e-39f)
{
register float accumulator, xPower;
register long intPart;
register union {float f; long i;} xBits;
xBits.f = x;
intPart = ((xBits.i)>>23); /* get biased exponent */
intPart -= 127; /* unbias it */
x = (float)(xBits.i & 0x007FFFFF); /* mask off exponent leaving 0x800000*(mantissa - 1) */
x *= 1.192092895507812e-07f; /* divide by 0x800000 */
accumulator = 1.0f + 0.49959804148061f*x;
xPower = x*x;
accumulator += -0.12047308243453f*xPower;
xPower *= x;
accumulator += 0.04585425015501f*xPower;
xPower *= x;
accumulator += -0.01076564682800f*xPower;
if (intPart & 0x00000001)
{
accumulator *= ROOT2; /* an odd input exponent means an extra sqrt(2) in the output */
}
xBits.i = intPart >> 1; /* divide exponent by 2, lose LSB */
xBits.i += 127; /* rebias exponent */
xBits.i <<= 23; /* move biased exponent into exponent bits */
return accumulator * xBits.f;
}
else
{
return 0.0f;
}
#endif
}
inline float CLAM_log(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) log((double)x);
#else
return LN2*CLAM_log2(x);
#endif
}
inline float CLAM_log10(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) log10((double)x);
#else
return LN2_OVER_LN10*CLAM_log2(x);
#endif
}
inline float CLAM_20log10(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) 20*log10((double)x);
#else
return TIMES20LN2_OVER_LN10*CLAM_log2(x);
#endif
}
inline float CLAM_exp(register float x)
{
#ifndef CLAM_OPTIMIZE
return (float) exp((double)x);
#else
return CLAM_exp2(ONE_OVER_LN2*x);
#endif
}
#if defined _MSC_VER && _MSC_VER < 1310 // MSVC++ 6
#undef min
#undef max
namespace std
{
template < typename T >
const T& max( const T& a, const T& b) {
return (a>=b)? a : b;
}
template < typename T >
const T& min(const T& a, const T& b) {
return (a<=b)? a : b;
}
} // namespace std
#endif // MSVC++ 6
#if defined _MSC_VER // MSVC++7
namespace std
{
template <typename T>
bool isnan(T data)
{
return _isnan(data) == 1;
}
template <typename T>
bool isinf(T data)
{
return _isnan(data) == 1;
}
}
#endif // MSVC++ 7
#ifndef __USE_ISOC99
#ifndef __APPLE__
inline double round(double _X)
{return (floor(_X+0.5)); }
inline float round(float _X)
{return (floorf(_X+0.5f)); }
#endif // __APPLE__
#endif // __USE_ISOC99
/** Fast "pow" for converting a logarithmic value into linear value ( assumes a log
scale factor of 20 ). Warning, float should be TData but includes should then be changed**/
inline float log2lin( float x )
{
// static double magic = 1.0 / (20.0 * log10(exp(1.0)))=0.1151292546497;
return CLAM_exp( x * 0.1151292546497f );
}
/**
* Returns true if the given (unsigned) integer n is
* a power-of-two.
* Will return true for n = 0 and n = 1.
**/
inline bool isPowerOfTwo( CLAM::TUInt32 n)
{
return (((n - 1) & n) == 0);
}
/**
* Returns the closest power-of-two number greater or equal
* to n for the given (unsigned) integer n.
* Will return 0 when n = 0 and 1 when n = 1.
**/
inline CLAM::TUInt32 nextPowerOfTwo( CLAM::TUInt32 n)
{
--n;
n |= n >> 16;
n |= n >> 8;
n |= n >> 4;
n |= n >> 2;
n |= n >> 1;
++n;
return n;
}
namespace CLAM
{
/*Non member function, returns absolute value of class T*/
template <class T> inline T Abs(T value)
{
return ( value < 0 ) ? -value : value;
}
/* DB */
// Default scaling
#define CLAM_DB_SCALING 20
inline double DB(double linData, int scaling=20)
{
return (scaling*CLAM_log10(linData));
}
inline double Lin(double logData, int scaling=20 )
{
return (CLAM_pow(double(10),(logData/scaling)) );
}
/** Definition of CLAM_min and CLAM_max. Note1: we are not returning a const reference
* because in some specializations this is not possible. Note2: we are not using std::max and
* std::min by default because in Windows these functions are implemented with different names
*/
template<class T> inline
T CLAM_max(const T& x, const T& y)
{return (x < y ? y : x); }
template<class T> inline
T CLAM_min(const T& x, const T& y)
{return (x > y ? y : x); }
}
#endif // CLAM_Math.hxx
|