This file is indexed.

/usr/include/CLAM/CLAM_Math.hxx is in libclam-dev 1.4.0-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/*
 * Copyright (c) 2004 MUSIC TECHNOLOGY GROUP (MTG)
 *                         UNIVERSITAT POMPEU FABRA
 *
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef __CLAM_MATH__
#define __CLAM_MATH__

#include <cmath>
#include "DataTypes.hxx"
#include "FastRounding.hxx"


//The following constants are defined also in OSDefines but only for windows and using the #define preprocessor
//directive. It is much better to use const float declarations
const float PI_	=	3.1415926535897932384626433832795028841972;		/* pi */
const float ONE_OVER_PI	=	(0.3183098861837906661338147750939f);
const float TWOPI		=	(6.2831853071795864769252867665590057683943f);		/* 2*pi */
const float ONE_OVER_TWOPI =	(0.15915494309189535682609381638f);
const float PI_2	=		(1.5707963267948966192313216916397514420986f);		/* pi/2 */
const float TWO_OVER_PI	=	(0.636619772367581332267629550188f);
const float LN2		=		(0.6931471805599453094172321214581765680755f);		/* ln(2) */
const float ONE_OVER_LN2 =	(1.44269504088896333066907387547f);
const float LN10	=		(2.3025850929940456840179914546843642076011f);		/* ln(10) */
const float ONE_OVER_LN10 =	(0.43429448190325177635683940025f);
const float LN2_OVER_LN10 = LN2*ONE_OVER_LN10;
const float TIMES20LN2_OVER_LN10 = 20*LN2_OVER_LN10;
const long LONG_OFFSET	=	4096L;
const float FLOAT_OFFSET =	4096.0;
const float HUGE_ = 1.0e8;
const float ROOT2	=		(1.4142135623730950488016887242096980785697f);		/* sqrt(2) */

/** Efficient versions of common functions*/
inline float CLAM_sin(register float x)
{
#ifndef CLAM_OPTIMIZE
	return (float) sin((double)x);
#else
	x *= ONE_OVER_PI;
	register float accumulator, xPower, xSquared;
	register long evenIntPart = ((long)(0.5f*x + 1024.5) - 1024)<<1;
	x -= (float)evenIntPart;
	xSquared = x*x;
	accumulator = 3.14159265358979f*x;
	xPower = xSquared*x;
	accumulator += -5.16731953364340f*xPower;
	xPower *= xSquared;
	accumulator += 2.54620566822659f*xPower;
	xPower *= xSquared;
	accumulator += -0.586027023087261f*xPower;
	xPower *= xSquared;
	accumulator += 0.06554823491427f*xPower;
	return accumulator;
#endif
}

inline float CLAM_cos(register float x)
	{
#ifndef CLAM_OPTIMIZE
	return (float) cos((double)x);
#else
	x *= ONE_OVER_PI;
	register float accumulator, xPower, xSquared;
	
	register long evenIntPart = ((long)(0.5f*x + 1024.5f) - 1024)<<1;
	x -= (float)evenIntPart;
	
	xSquared = x*x;
	accumulator = 1.57079632679490f*x;						/* series for sin(PI/2*x) */
	xPower = xSquared*x;
	accumulator += -0.64596406188166f*xPower;
	xPower *= xSquared;
	accumulator += 0.07969158490912f*xPower;
	xPower *= xSquared;
	accumulator += -0.00467687997706f*xPower;
	xPower *= xSquared;
	accumulator += 0.00015303015470f*xPower;
	return 1.0f - 2.0f*accumulator*accumulator;				/* cos(w) = 1 - 2*(sin(w/2))^2 */
#endif
	}

inline float CLAM_atan(register float x)
	{
#ifndef CLAM_OPTIMIZE
	return (float) atan((double)x);
#else
	register float accumulator, xPower, xSquared, offset;
	
	offset = 0.0f;
	
	if (x < -1.0f)
		{
		offset = -PI_2;
		x = -1.0f/x;
		}
	 else if (x > 1.0f)
		{
		offset = PI_2;
		x = -1.0f/x;
		}
	xSquared = x*x;
	accumulator = 1.0f;
	xPower = xSquared;
	accumulator += 0.33288950512027f*xPower;
	xPower *= xSquared;
	accumulator += -0.08467922817644f*xPower;
	xPower *= xSquared;
	accumulator += 0.03252232640125f*xPower;
	xPower *= xSquared;
	accumulator += -0.00749305860992f*xPower;
	
	return offset + x/accumulator;
#endif
}

inline float CLAM_atan2(float Imag, float Real)
	{
#ifndef CLAM_OPTIMIZE
	return (float) atan2((double)Imag, (double)Real);
#else
	if(Real==0 && Imag==0) return 0.f;
	register float accumulator, xPower, xSquared, offset, x;
		
	if (Imag > 0.0f)
		{
		if (Imag <= -Real)
			{
			offset = PI_;
			x = Imag/Real;
			}
		 else if (Imag > Real)
			{
			offset = PI_2;
			x = -Real/Imag;
			}
		 else
			{
			offset = 0.0f;
			x = Imag/Real;
			}
		}
	 else
		{
		if (Imag >= Real)
			{
			offset = -PI_;
			x = Imag/Real;
			}
		 else if (Imag < -Real)
			{
			offset = -PI_2;
			x = -Real/Imag;
			}
		 else
			{
			offset = 0.0f;
			x = Imag/Real;
			}
		}
	
	xSquared = x*x;
	accumulator = 1.0f;
	xPower = xSquared;
	accumulator += 0.33288950512027f*xPower;
	xPower *= xSquared;
	accumulator += -0.08467922817644f*xPower;
	xPower *= xSquared;
	accumulator += 0.03252232640125f*xPower;
	xPower *= xSquared;
	accumulator += -0.00749305860992f*xPower;
	        
	return offset + x/accumulator;
#endif
}

inline float	CLAM_exp2(register float x)
{
#ifndef CLAM_OPTIMIZE
	return (float) exp(LN2*(double)x);
#else
	if (x >= -127.0f)
		{
		register float accumulator, xPower;
		register union {float f; long i;} xBits;
			
		xBits.i = (long)(x + FLOAT_OFFSET) - LONG_OFFSET;		/* integer part */
		x -= (float)(xBits.i);									/* fractional part */
		
		accumulator = 1.0f + 0.69303212081966f*x;
		xPower = x*x;
		accumulator += 0.24137976293709f*xPower;
		xPower *= x;
		accumulator += 0.05203236900844f*xPower;
		xPower *= x;
		accumulator += 0.01355574723481f*xPower;
		
		xBits.i += 127;											/* bias integer part */
		xBits.i <<= 23;											/* move biased int part into exponent bits */
		
		return accumulator * xBits.f;
		}
	 else
		{
		return 0.0f;
		}
#endif
}

inline float	CLAM_log2(register float x)
{
#ifndef CLAM_OPTIMIZE
	return (float) (ONE_OVER_LN2*log((double)x));
#else
	if (x > 5.877471754e-39f)
		{
		register float accumulator, xPower;
		register long intPart;
		
		register union {float f; long i;} xBits;
		
		xBits.f = x;
		
		intPart = ((xBits.i)>>23);					/* get biased exponent */
		intPart -= 127;								/* unbias it */
		
		x = (float)(xBits.i & 0x007FFFFF);			/* mask off exponent leaving 0x800000*(mantissa - 1) */
		x *= 1.192092895507812e-07f;					/* divide by 0x800000 */
		
		accumulator = 1.44254494359510f*x;
		xPower = x*x;
		accumulator += -0.71814525675041f*xPower;
		xPower *= x;
		accumulator += 0.45754919692582f*xPower;
		xPower *= x;
		accumulator += -0.27790534462866f*xPower;
		xPower *= x;
		accumulator += 0.12179791068782f*xPower;
		xPower *= x;
		accumulator += -0.02584144982967f*xPower;
		
		return accumulator + (float)intPart;
		}
	 else
		{
		return -HUGE_;
		}
#endif
}

inline float CLAM_pow(float x, float y)
{
#ifndef CLAM_OPTIMIZE
	return (float) pow((double)x, (double)y);
#else
	return CLAM_exp2(y*CLAM_log2(x));
#endif
}

inline float CLAM_sqrt(register float x)
	{
#ifndef CLAM_OPTIMIZE
	return (float) sqrt((double)x);
#else
	if (x > 5.877471754e-39f)
		{
		register float accumulator, xPower;
		register long intPart;
		register union {float f; long i;} xBits;
		
		xBits.f = x;
		
		intPart = ((xBits.i)>>23);					/* get biased exponent */
		intPart -= 127;								/* unbias it */
		
		x = (float)(xBits.i & 0x007FFFFF);			/* mask off exponent leaving 0x800000*(mantissa - 1) */
		x *= 1.192092895507812e-07f;					/* divide by 0x800000 */
		
		accumulator =  1.0f + 0.49959804148061f*x;
		xPower = x*x;
		accumulator += -0.12047308243453f*xPower;
		xPower *= x;
		accumulator += 0.04585425015501f*xPower;
		xPower *= x;
		accumulator += -0.01076564682800f*xPower;
		
		if (intPart & 0x00000001)
			{
			accumulator *= ROOT2;					/* an odd input exponent means an extra sqrt(2) in the output */
			}
		
		xBits.i = intPart >> 1;						/* divide exponent by 2, lose LSB */
		xBits.i += 127;								/* rebias exponent */
		xBits.i <<= 23;								/* move biased exponent into exponent bits */
		
		return accumulator * xBits.f;
		}
	 else
		{
		return 0.0f;
		}
#endif
	}

inline float CLAM_log(register float x)
{
#ifndef CLAM_OPTIMIZE
	return (float) log((double)x);
#else
	return LN2*CLAM_log2(x);
#endif
}

inline float CLAM_log10(register float x)
{
#ifndef CLAM_OPTIMIZE
	return (float) log10((double)x);
#else
	return LN2_OVER_LN10*CLAM_log2(x);
#endif
}

inline float CLAM_20log10(register float x)
{
#ifndef CLAM_OPTIMIZE
	return (float) 20*log10((double)x);
#else
	return TIMES20LN2_OVER_LN10*CLAM_log2(x);
#endif
}

inline float CLAM_exp(register float x)
{
#ifndef CLAM_OPTIMIZE
	return (float) exp((double)x);
#else
	return CLAM_exp2(ONE_OVER_LN2*x);
#endif
}

#if defined _MSC_VER && _MSC_VER < 1310 // MSVC++ 6
#undef min
#undef max
	namespace std
	{	
		template < typename T >
		const T& max( const T& a, const T& b) { 
			return (a>=b)? a : b;
		}
		template < typename T >
		const T& min(const T& a, const T& b) { 
			return (a<=b)? a : b;
		}
	} // namespace std
#endif // MSVC++ 6

#if defined _MSC_VER // MSVC++7
	namespace std
	{
		template <typename T>
		bool isnan(T data)
		{
			return _isnan(data) == 1;
		}
		template <typename T>
		bool isinf(T data)
		{
			return _isnan(data) == 1;
		}
	}
#endif // MSVC++ 7

#ifndef __USE_ISOC99
#ifndef __APPLE__
inline double  round(double _X)
	{return (floor(_X+0.5)); }
inline float  round(float _X)
	{return (floorf(_X+0.5f)); }
#endif // __APPLE__
#endif // __USE_ISOC99


/** Fast "pow" for converting a logarithmic value into linear value ( assumes a log
scale factor of 20 ). Warning, float should be TData but includes should then be changed**/
inline float log2lin( float x )
{

//	static double magic = 1.0 / (20.0 * log10(exp(1.0)))=0.1151292546497;

	return CLAM_exp( x * 0.1151292546497f );

}

/**
 * Returns true if the given (unsigned) integer n is
 * a power-of-two.
 * Will return true for n = 0 and n = 1.
 **/
inline bool isPowerOfTwo( CLAM::TUInt32 n)
{
	return (((n - 1) & n) == 0);
}

/**
 * Returns the closest power-of-two number greater or equal
 * to n for the given (unsigned) integer n.
 * Will return 0 when n = 0 and 1 when n = 1.
 **/
inline CLAM::TUInt32 nextPowerOfTwo( CLAM::TUInt32 n)
{
	--n;

	n |= n >> 16;
	n |= n >> 8;
	n |= n >> 4;
	n |= n >> 2;
	n |= n >> 1;
	++n;

	return n;
}

namespace CLAM
{

/*Non member function, returns absolute value of class T*/
template <class T> inline T Abs(T value)
{
	return ( value < 0 ) ? -value : value;
}

/* DB */

// Default scaling
#define CLAM_DB_SCALING  20  

inline double DB(double linData, int scaling=20) 
{ 
	return (scaling*CLAM_log10(linData)); 
}

inline double Lin(double logData, int scaling=20 ) 
{ 
	return (CLAM_pow(double(10),(logData/scaling)) ); 
}

/** Definition of CLAM_min and CLAM_max. Note1: we are not returning a const reference 
 *	because in some specializations this is not possible. Note2: we are not using std::max and 
 *	std::min by default because in Windows these functions are implemented with different names
 */
template<class T> inline
T CLAM_max(const T& x, const T& y)
	{return (x < y ? y : x); }

template<class T> inline
T CLAM_min(const T& x, const T& y)
	{return (x > y ? y : x); }
}

#endif // CLAM_Math.hxx